运动前和运动中规划序列的皮层区域

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2024-11-14 DOI:10.1523/JNEUROSCI.1300-24.2024
Giacomo Ariani, Mahdiyar Shahbazi, Jörn Diedrichsen
{"title":"运动前和运动中规划序列的皮层区域","authors":"Giacomo Ariani, Mahdiyar Shahbazi, Jörn Diedrichsen","doi":"10.1523/JNEUROSCI.1300-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Production of rapid movement sequences relies on preparation before (pre-planning) and during (online planning) movement. Here, we compared these processes and asked whether they recruit different cortical areas. Human participants performed three single-finger and three multi-finger sequences in a delayed movement paradigm while undergoing 7T functional MRI. During preparation, primary motor (M1) and somatosensory (S1) areas showed pre-activation of the first movement, even without increases in overall activation. During production, the temporal summation of activity patterns corresponding to constituent fingers explained activity in these areas (M1 and S1). In contrast, the dorsal premotor cortex (PMd) and anterior superior parietal lobule (aSPL) showed substantial activation during the preparation (pre-planning) of multi-finger compared to single-finger sequences. These regions (PMd and aSPL) were also more active during production of multi-finger sequences, suggesting that pre- and online planning may recruit the same regions. However, we observed small but robust differences between the two contrasts, suggesting distinct contributions to pre- and online planning. Multivariate analysis revealed sequence-specific representations in both PMd and aSPL, which remained stable across both preparation and production phases. Our analyses show that these areas maintain a sequence-specific representation before and during sequence production, likely guiding the execution-related areas in the production of rapid movement sequences.<b>Significance Statement</b> Understanding how the brain orchestrates complex behavior remains a core challenge in human neuroscience. Here, we combine high-resolution neuroimaging and a carefully crafted design to study the neural control of rapid sequential finger movements, like typing or playing the piano. Advancing prior research, we show that the brain areas involved in planning these movements maintain those representations throughout the execution of the sequence. This representational stability across planning and execution suggests an intricate connection between these processes. Our results shed light on the nuanced contributions of different cortical areas to different aspects of coordinating skilled movement. This work is well placed to inform future research in animal models and the development of targeted interventions against movement disorders.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cortical areas for planning sequences before and during movement.\",\"authors\":\"Giacomo Ariani, Mahdiyar Shahbazi, Jörn Diedrichsen\",\"doi\":\"10.1523/JNEUROSCI.1300-24.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Production of rapid movement sequences relies on preparation before (pre-planning) and during (online planning) movement. Here, we compared these processes and asked whether they recruit different cortical areas. Human participants performed three single-finger and three multi-finger sequences in a delayed movement paradigm while undergoing 7T functional MRI. During preparation, primary motor (M1) and somatosensory (S1) areas showed pre-activation of the first movement, even without increases in overall activation. During production, the temporal summation of activity patterns corresponding to constituent fingers explained activity in these areas (M1 and S1). In contrast, the dorsal premotor cortex (PMd) and anterior superior parietal lobule (aSPL) showed substantial activation during the preparation (pre-planning) of multi-finger compared to single-finger sequences. These regions (PMd and aSPL) were also more active during production of multi-finger sequences, suggesting that pre- and online planning may recruit the same regions. However, we observed small but robust differences between the two contrasts, suggesting distinct contributions to pre- and online planning. Multivariate analysis revealed sequence-specific representations in both PMd and aSPL, which remained stable across both preparation and production phases. Our analyses show that these areas maintain a sequence-specific representation before and during sequence production, likely guiding the execution-related areas in the production of rapid movement sequences.<b>Significance Statement</b> Understanding how the brain orchestrates complex behavior remains a core challenge in human neuroscience. Here, we combine high-resolution neuroimaging and a carefully crafted design to study the neural control of rapid sequential finger movements, like typing or playing the piano. Advancing prior research, we show that the brain areas involved in planning these movements maintain those representations throughout the execution of the sequence. This representational stability across planning and execution suggests an intricate connection between these processes. Our results shed light on the nuanced contributions of different cortical areas to different aspects of coordinating skilled movement. This work is well placed to inform future research in animal models and the development of targeted interventions against movement disorders.</p>\",\"PeriodicalId\":50114,\"journal\":{\"name\":\"Journal of Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/JNEUROSCI.1300-24.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1300-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

快速运动序列的产生有赖于运动前(预规划)和运动中(在线规划)的准备。在此,我们对这些过程进行了比较,并询问它们是否征用了不同的皮层区域。人类参与者在延迟运动范式中进行了三个单指和三个多指序列,同时接受了 7T 功能磁共振成像。在准备过程中,初级运动(M1)和体感(S1)区域显示出第一个动作的预激活,即使整体激活没有增加。在制作过程中,与组成手指相对应的活动模式的时间总和解释了这些区域(M1 和 S1)的活动。相反,与单指序列相比,在多指序列的准备(预规划)过程中,背侧运动前皮层(PMd)和顶叶前上部(aSPL)显示出大量激活。在制作多指序列时,这些区域(PMd 和 aSPL)也更加活跃,这表明预规划和在线规划可能会招募相同的区域。然而,我们观察到这两种对比之间存在微小但稳健的差异,这表明预规划和在线规划有不同的贡献。多变量分析显示,PMd 和 aSPL 中的序列特异性表征在准备和制作阶段都保持稳定。我们的分析表明,这些区域在序列制作之前和期间保持着序列特异性表征,可能在快速运动序列的制作过程中对执行相关区域起到指导作用。在这里,我们结合高分辨率神经成像技术和精心设计的设计,研究了快速连续手指运动(如打字或弹钢琴)的神经控制。在之前研究的基础上,我们发现参与这些动作规划的大脑区域在序列执行的整个过程中都能保持这些表征。这种跨越计划和执行的表征稳定性表明,这些过程之间存在着错综复杂的联系。我们的研究结果揭示了不同的大脑皮层区域对协调熟练动作的不同方面的细微贡献。这项工作为未来的动物模型研究和针对运动障碍的靶向干预措施的开发提供了很好的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cortical areas for planning sequences before and during movement.

Production of rapid movement sequences relies on preparation before (pre-planning) and during (online planning) movement. Here, we compared these processes and asked whether they recruit different cortical areas. Human participants performed three single-finger and three multi-finger sequences in a delayed movement paradigm while undergoing 7T functional MRI. During preparation, primary motor (M1) and somatosensory (S1) areas showed pre-activation of the first movement, even without increases in overall activation. During production, the temporal summation of activity patterns corresponding to constituent fingers explained activity in these areas (M1 and S1). In contrast, the dorsal premotor cortex (PMd) and anterior superior parietal lobule (aSPL) showed substantial activation during the preparation (pre-planning) of multi-finger compared to single-finger sequences. These regions (PMd and aSPL) were also more active during production of multi-finger sequences, suggesting that pre- and online planning may recruit the same regions. However, we observed small but robust differences between the two contrasts, suggesting distinct contributions to pre- and online planning. Multivariate analysis revealed sequence-specific representations in both PMd and aSPL, which remained stable across both preparation and production phases. Our analyses show that these areas maintain a sequence-specific representation before and during sequence production, likely guiding the execution-related areas in the production of rapid movement sequences.Significance Statement Understanding how the brain orchestrates complex behavior remains a core challenge in human neuroscience. Here, we combine high-resolution neuroimaging and a carefully crafted design to study the neural control of rapid sequential finger movements, like typing or playing the piano. Advancing prior research, we show that the brain areas involved in planning these movements maintain those representations throughout the execution of the sequence. This representational stability across planning and execution suggests an intricate connection between these processes. Our results shed light on the nuanced contributions of different cortical areas to different aspects of coordinating skilled movement. This work is well placed to inform future research in animal models and the development of targeted interventions against movement disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
A "Conscious" Loss of Balance: Directing Attention to Movement Can Impair the Cortical Response to Postural Perturbations. Haploinsufficiency of Syngap1 in Striatal Indirect Pathway Neurons Alters Motor and Goal-Directed Behaviors in Mice. How Distributed Subcortical Integration of Reward and Threat May Inform Subsequent Approach-Avoidance Decisions. The Spatiotemporal Dynamics of Bottom-Up and Top-Down Processing during At-a-Glance Reading. The Alzheimer's Disease Risk Gene CD2AP Functions in Dendritic Spines by Remodeling F-Actin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1