Xubing Hao, Xiaojin Li, Yan Huang, Jay Shi, Rashmie Abeysinghe, Cui Tao, Kirk Roberts, Guo-Qiang Zhang, Licong Cui
{"title":"定量评估 SNOMED CT 亚型分级质量对队列查询的影响。","authors":"Xubing Hao, Xiaojin Li, Yan Huang, Jay Shi, Rashmie Abeysinghe, Cui Tao, Kirk Roberts, Guo-Qiang Zhang, Licong Cui","doi":"10.1093/jamia/ocae272","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>SNOMED CT provides a standardized terminology for clinical concepts, allowing cohort queries over heterogeneous clinical data including Electronic Health Records (EHRs). While it is intuitive that missing and inaccurate subtype (or is-a) relations in SNOMED CT reduce the recall and precision of cohort queries, the extent of these impacts has not been formally assessed. This study fills this gap by developing quantitative metrics to measure these impacts and performing statistical analysis on their significance.</p><p><strong>Material and methods: </strong>We used the Optum de-identified COVID-19 Electronic Health Record dataset. We defined micro-averaged and macro-averaged recall and precision metrics to assess the impact of missing and inaccurate is-a relations on cohort queries. Both practical and simulated analyses were performed. Practical analyses involved 407 missing and 48 inaccurate is-a relations confirmed by domain experts, with statistical testing using Wilcoxon signed-rank tests. Simulated analyses used two random sets of 400 is-a relations to simulate missing and inaccurate is-a relations.</p><p><strong>Results: </strong>Wilcoxon signed-rank tests from both practical and simulated analyses (P-values < .001) showed that missing is-a relations significantly reduced the micro- and macro-averaged recall, and inaccurate is-a relations significantly reduced the micro- and macro-averaged precision.</p><p><strong>Discussion: </strong>The introduced impact metrics can assist SNOMED CT maintainers in prioritizing critical hierarchical defects for quality enhancement. These metrics are generally applicable for assessing the quality impact of a terminology's subtype hierarchy on its cohort query applications.</p><p><strong>Conclusion: </strong>Our results indicate a significant impact of missing and inaccurate is-a relations in SNOMED CT on the recall and precision of cohort queries. Our work highlights the importance of high-quality terminology hierarchy for cohort queries over EHR data and provides valuable insights for prioritizing quality improvements of SNOMED CT's hierarchy.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitatively assessing the impact of the quality of SNOMED CT subtype hierarchy on cohort queries.\",\"authors\":\"Xubing Hao, Xiaojin Li, Yan Huang, Jay Shi, Rashmie Abeysinghe, Cui Tao, Kirk Roberts, Guo-Qiang Zhang, Licong Cui\",\"doi\":\"10.1093/jamia/ocae272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>SNOMED CT provides a standardized terminology for clinical concepts, allowing cohort queries over heterogeneous clinical data including Electronic Health Records (EHRs). While it is intuitive that missing and inaccurate subtype (or is-a) relations in SNOMED CT reduce the recall and precision of cohort queries, the extent of these impacts has not been formally assessed. This study fills this gap by developing quantitative metrics to measure these impacts and performing statistical analysis on their significance.</p><p><strong>Material and methods: </strong>We used the Optum de-identified COVID-19 Electronic Health Record dataset. We defined micro-averaged and macro-averaged recall and precision metrics to assess the impact of missing and inaccurate is-a relations on cohort queries. Both practical and simulated analyses were performed. Practical analyses involved 407 missing and 48 inaccurate is-a relations confirmed by domain experts, with statistical testing using Wilcoxon signed-rank tests. Simulated analyses used two random sets of 400 is-a relations to simulate missing and inaccurate is-a relations.</p><p><strong>Results: </strong>Wilcoxon signed-rank tests from both practical and simulated analyses (P-values < .001) showed that missing is-a relations significantly reduced the micro- and macro-averaged recall, and inaccurate is-a relations significantly reduced the micro- and macro-averaged precision.</p><p><strong>Discussion: </strong>The introduced impact metrics can assist SNOMED CT maintainers in prioritizing critical hierarchical defects for quality enhancement. These metrics are generally applicable for assessing the quality impact of a terminology's subtype hierarchy on its cohort query applications.</p><p><strong>Conclusion: </strong>Our results indicate a significant impact of missing and inaccurate is-a relations in SNOMED CT on the recall and precision of cohort queries. Our work highlights the importance of high-quality terminology hierarchy for cohort queries over EHR data and provides valuable insights for prioritizing quality improvements of SNOMED CT's hierarchy.</p>\",\"PeriodicalId\":50016,\"journal\":{\"name\":\"Journal of the American Medical Informatics Association\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Medical Informatics Association\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1093/jamia/ocae272\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae272","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Quantitatively assessing the impact of the quality of SNOMED CT subtype hierarchy on cohort queries.
Objective: SNOMED CT provides a standardized terminology for clinical concepts, allowing cohort queries over heterogeneous clinical data including Electronic Health Records (EHRs). While it is intuitive that missing and inaccurate subtype (or is-a) relations in SNOMED CT reduce the recall and precision of cohort queries, the extent of these impacts has not been formally assessed. This study fills this gap by developing quantitative metrics to measure these impacts and performing statistical analysis on their significance.
Material and methods: We used the Optum de-identified COVID-19 Electronic Health Record dataset. We defined micro-averaged and macro-averaged recall and precision metrics to assess the impact of missing and inaccurate is-a relations on cohort queries. Both practical and simulated analyses were performed. Practical analyses involved 407 missing and 48 inaccurate is-a relations confirmed by domain experts, with statistical testing using Wilcoxon signed-rank tests. Simulated analyses used two random sets of 400 is-a relations to simulate missing and inaccurate is-a relations.
Results: Wilcoxon signed-rank tests from both practical and simulated analyses (P-values < .001) showed that missing is-a relations significantly reduced the micro- and macro-averaged recall, and inaccurate is-a relations significantly reduced the micro- and macro-averaged precision.
Discussion: The introduced impact metrics can assist SNOMED CT maintainers in prioritizing critical hierarchical defects for quality enhancement. These metrics are generally applicable for assessing the quality impact of a terminology's subtype hierarchy on its cohort query applications.
Conclusion: Our results indicate a significant impact of missing and inaccurate is-a relations in SNOMED CT on the recall and precision of cohort queries. Our work highlights the importance of high-quality terminology hierarchy for cohort queries over EHR data and provides valuable insights for prioritizing quality improvements of SNOMED CT's hierarchy.
期刊介绍:
JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.