Salih Demir, Alina Hotes, Tanja Schmid, Stefano Cairo, Emilie Indersie, Claudio Pisano, Eiso Hiyama, Tomoro Hishiki, Christian Vokuhl, Sophie Branchereau, Penelope Brock, Irene Schmid, József Zsiros, Roland Kappler
{"title":"药物优先排序将帕诺比诺司他确定为转移性肝母细胞瘤患者的定制治疗要素。","authors":"Salih Demir, Alina Hotes, Tanja Schmid, Stefano Cairo, Emilie Indersie, Claudio Pisano, Eiso Hiyama, Tomoro Hishiki, Christian Vokuhl, Sophie Branchereau, Penelope Brock, Irene Schmid, József Zsiros, Roland Kappler","doi":"10.1186/s13046-024-03221-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Patients with metastatic hepatoblastoma are treated with severely toxic first-line chemotherapies in combination with surgery. Yet, inadequate response of lung metastases to neo-adjuvant chemotherapy still compromises patient outcomes making new treatment strategies, tailored to more efficient lung clearance, mandatory.</p><p><strong>Methods: </strong>We harnessed a comprehensive patient-derived xenograft platform and a variety of in vitro and in vivo assays to establish the preclinical and biological rationale for a new drug for patients with metastatic hepatoblastoma.</p><p><strong>Results: </strong>The testing of a library of established drugs on patient-derived xenografts identified histone deacetylase inhibitors, most notably panobinostat, to be highly efficacious on hepatoblastoma cells, as compared to non-cancerous cells. Molecularly, the anti-tumor effect of panobinostat is mediated by posttranslational obstruction of the MYC oncoprotein as a result of dual specificity phosphatase 1 upregulation, thereby leading to growth inhibition and programmed cell death. Of clinical importance, upregulation of the MYC target gene nucleophosmin 1 is indicative of response to panobinostat and associated with metastatic disease in patients with hepatoblastoma. The combination of panobinostat with the current SIOPEL 4 induction protocol, consisting of cisplatin and doxorubicin, revealed high synergies already at low nanomolar levels. The simulation of a clinical trial, with this combination therapy, in patient-derived xenograft models, and ultimately heterotypic lung metastasis mimics clearly underscored the potency of this approach.</p><p><strong>Conclusion: </strong>Integrated studies define MYC inhibition by panobinostat as a novel treatment element to be introduced into the therapeutic strategy for patients with metastatic hepatoblastoma.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"299"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556140/pdf/","citationCount":"0","resultStr":"{\"title\":\"Drug prioritization identifies panobinostat as a tailored treatment element for patients with metastatic hepatoblastoma.\",\"authors\":\"Salih Demir, Alina Hotes, Tanja Schmid, Stefano Cairo, Emilie Indersie, Claudio Pisano, Eiso Hiyama, Tomoro Hishiki, Christian Vokuhl, Sophie Branchereau, Penelope Brock, Irene Schmid, József Zsiros, Roland Kappler\",\"doi\":\"10.1186/s13046-024-03221-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Patients with metastatic hepatoblastoma are treated with severely toxic first-line chemotherapies in combination with surgery. Yet, inadequate response of lung metastases to neo-adjuvant chemotherapy still compromises patient outcomes making new treatment strategies, tailored to more efficient lung clearance, mandatory.</p><p><strong>Methods: </strong>We harnessed a comprehensive patient-derived xenograft platform and a variety of in vitro and in vivo assays to establish the preclinical and biological rationale for a new drug for patients with metastatic hepatoblastoma.</p><p><strong>Results: </strong>The testing of a library of established drugs on patient-derived xenografts identified histone deacetylase inhibitors, most notably panobinostat, to be highly efficacious on hepatoblastoma cells, as compared to non-cancerous cells. Molecularly, the anti-tumor effect of panobinostat is mediated by posttranslational obstruction of the MYC oncoprotein as a result of dual specificity phosphatase 1 upregulation, thereby leading to growth inhibition and programmed cell death. Of clinical importance, upregulation of the MYC target gene nucleophosmin 1 is indicative of response to panobinostat and associated with metastatic disease in patients with hepatoblastoma. The combination of panobinostat with the current SIOPEL 4 induction protocol, consisting of cisplatin and doxorubicin, revealed high synergies already at low nanomolar levels. The simulation of a clinical trial, with this combination therapy, in patient-derived xenograft models, and ultimately heterotypic lung metastasis mimics clearly underscored the potency of this approach.</p><p><strong>Conclusion: </strong>Integrated studies define MYC inhibition by panobinostat as a novel treatment element to be introduced into the therapeutic strategy for patients with metastatic hepatoblastoma.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"299\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556140/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03221-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03221-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Drug prioritization identifies panobinostat as a tailored treatment element for patients with metastatic hepatoblastoma.
Background: Patients with metastatic hepatoblastoma are treated with severely toxic first-line chemotherapies in combination with surgery. Yet, inadequate response of lung metastases to neo-adjuvant chemotherapy still compromises patient outcomes making new treatment strategies, tailored to more efficient lung clearance, mandatory.
Methods: We harnessed a comprehensive patient-derived xenograft platform and a variety of in vitro and in vivo assays to establish the preclinical and biological rationale for a new drug for patients with metastatic hepatoblastoma.
Results: The testing of a library of established drugs on patient-derived xenografts identified histone deacetylase inhibitors, most notably panobinostat, to be highly efficacious on hepatoblastoma cells, as compared to non-cancerous cells. Molecularly, the anti-tumor effect of panobinostat is mediated by posttranslational obstruction of the MYC oncoprotein as a result of dual specificity phosphatase 1 upregulation, thereby leading to growth inhibition and programmed cell death. Of clinical importance, upregulation of the MYC target gene nucleophosmin 1 is indicative of response to panobinostat and associated with metastatic disease in patients with hepatoblastoma. The combination of panobinostat with the current SIOPEL 4 induction protocol, consisting of cisplatin and doxorubicin, revealed high synergies already at low nanomolar levels. The simulation of a clinical trial, with this combination therapy, in patient-derived xenograft models, and ultimately heterotypic lung metastasis mimics clearly underscored the potency of this approach.
Conclusion: Integrated studies define MYC inhibition by panobinostat as a novel treatment element to be introduced into the therapeutic strategy for patients with metastatic hepatoblastoma.
期刊介绍:
The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications.
We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options.
We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us.
We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community.
By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.