Rachel R. Yorlets , Youjin Lee , Jason R. Gantenberg
{"title":"用 R 计算风险和流行率以及差异:通过实践教程和代码培养直觉。","authors":"Rachel R. Yorlets , Youjin Lee , Jason R. Gantenberg","doi":"10.1016/j.annepidem.2024.10.004","DOIUrl":null,"url":null,"abstract":"<div><div>Epidemiologic research questions often focus on evaluating binary outcomes, yet curricula and scientific literature do not always provide clear guidance or examples on selecting and calculating an appropriate measure of association in these scenarios. Reporting inappropriate measures may lead to misleading statistical conclusions. We present a hands-on tutorial that includes annotated code written in an open-source statistical programming language (R) showing readers how to apply, compare, and understand four methods used to estimate a risk or prevalence ratio (or difference), rather than presenting an odds ratio. We will provide guidance on when to use each method, discuss the strengths and limitations of each approach, and compare the results obtained across them. Ultimately, we aim to help trainees, public health researchers, and interdisciplinary professionals develop an intuition for these methods and empower them to implement and interpret these methods in their own research.</div></div>","PeriodicalId":50767,"journal":{"name":"Annals of Epidemiology","volume":"99 ","pages":"Pages 48-53"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculating risk and prevalence ratios and differences in R: Developing intuition with a hands-on tutorial and code\",\"authors\":\"Rachel R. Yorlets , Youjin Lee , Jason R. Gantenberg\",\"doi\":\"10.1016/j.annepidem.2024.10.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Epidemiologic research questions often focus on evaluating binary outcomes, yet curricula and scientific literature do not always provide clear guidance or examples on selecting and calculating an appropriate measure of association in these scenarios. Reporting inappropriate measures may lead to misleading statistical conclusions. We present a hands-on tutorial that includes annotated code written in an open-source statistical programming language (R) showing readers how to apply, compare, and understand four methods used to estimate a risk or prevalence ratio (or difference), rather than presenting an odds ratio. We will provide guidance on when to use each method, discuss the strengths and limitations of each approach, and compare the results obtained across them. Ultimately, we aim to help trainees, public health researchers, and interdisciplinary professionals develop an intuition for these methods and empower them to implement and interpret these methods in their own research.</div></div>\",\"PeriodicalId\":50767,\"journal\":{\"name\":\"Annals of Epidemiology\",\"volume\":\"99 \",\"pages\":\"Pages 48-53\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047279724002461\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047279724002461","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Calculating risk and prevalence ratios and differences in R: Developing intuition with a hands-on tutorial and code
Epidemiologic research questions often focus on evaluating binary outcomes, yet curricula and scientific literature do not always provide clear guidance or examples on selecting and calculating an appropriate measure of association in these scenarios. Reporting inappropriate measures may lead to misleading statistical conclusions. We present a hands-on tutorial that includes annotated code written in an open-source statistical programming language (R) showing readers how to apply, compare, and understand four methods used to estimate a risk or prevalence ratio (or difference), rather than presenting an odds ratio. We will provide guidance on when to use each method, discuss the strengths and limitations of each approach, and compare the results obtained across them. Ultimately, we aim to help trainees, public health researchers, and interdisciplinary professionals develop an intuition for these methods and empower them to implement and interpret these methods in their own research.
期刊介绍:
The journal emphasizes the application of epidemiologic methods to issues that affect the distribution and determinants of human illness in diverse contexts. Its primary focus is on chronic and acute conditions of diverse etiologies and of major importance to clinical medicine, public health, and health care delivery.