{"title":"基于超声波传感器的三维水幻影水位测量:原型开发。","authors":"Taehyung Kim, Jeongun Kim, Engchan Kim","doi":"10.4103/jmp.jmp_60_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The purpose of this study was to develop a prototype for controlling the water level of a three-dimensional (3D) water phantom using ultrasound sensors and Arduino technology and evaluate its performance in setting up the 3D water phantom for radiation beam measurements.</p><p><strong>Materials and methods: </strong>A prototype consisted of an Arduino Nano board and two types of ultrasound sensors (US015 and SR04). The accuracy of both sensors was tested at various distances and the performance was evaluated through statistical analysis. The distance measurement test was performed rigorously at intervals of 2 cm from 5 cm to 21 cm, measuring an average error and a maximum deviation for each sensor.</p><p><strong>Results: </strong>Both sensors demonstrated the measurement accuracy within 2 mm. When using the traditional and prototype-based setup methods, the measured photon and electron beam profiles did not show any significant difference. This result suggests the equivalent setup capability when using these two different 3D water phantom setup methods.</p><p><strong>Conclusion: </strong>The ultrasound sensor-based prototype is demonstrated as a more effective device in maintaining the 3D water phantom setup consistently compared to the traditional method, which is prone to human error, and it will aid in facilitating precise phantom setup during the commissioning and routine quality assurance (QA) of linear accelerators in radiotherapy clinics.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 3","pages":"387-393"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548072/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic Sensor-based Water Leveling for Three-dimensional Water Phantom: Prototype Development.\",\"authors\":\"Taehyung Kim, Jeongun Kim, Engchan Kim\",\"doi\":\"10.4103/jmp.jmp_60_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The purpose of this study was to develop a prototype for controlling the water level of a three-dimensional (3D) water phantom using ultrasound sensors and Arduino technology and evaluate its performance in setting up the 3D water phantom for radiation beam measurements.</p><p><strong>Materials and methods: </strong>A prototype consisted of an Arduino Nano board and two types of ultrasound sensors (US015 and SR04). The accuracy of both sensors was tested at various distances and the performance was evaluated through statistical analysis. The distance measurement test was performed rigorously at intervals of 2 cm from 5 cm to 21 cm, measuring an average error and a maximum deviation for each sensor.</p><p><strong>Results: </strong>Both sensors demonstrated the measurement accuracy within 2 mm. When using the traditional and prototype-based setup methods, the measured photon and electron beam profiles did not show any significant difference. This result suggests the equivalent setup capability when using these two different 3D water phantom setup methods.</p><p><strong>Conclusion: </strong>The ultrasound sensor-based prototype is demonstrated as a more effective device in maintaining the 3D water phantom setup consistently compared to the traditional method, which is prone to human error, and it will aid in facilitating precise phantom setup during the commissioning and routine quality assurance (QA) of linear accelerators in radiotherapy clinics.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"49 3\",\"pages\":\"387-393\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548072/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_60_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_60_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Ultrasonic Sensor-based Water Leveling for Three-dimensional Water Phantom: Prototype Development.
Objectives: The purpose of this study was to develop a prototype for controlling the water level of a three-dimensional (3D) water phantom using ultrasound sensors and Arduino technology and evaluate its performance in setting up the 3D water phantom for radiation beam measurements.
Materials and methods: A prototype consisted of an Arduino Nano board and two types of ultrasound sensors (US015 and SR04). The accuracy of both sensors was tested at various distances and the performance was evaluated through statistical analysis. The distance measurement test was performed rigorously at intervals of 2 cm from 5 cm to 21 cm, measuring an average error and a maximum deviation for each sensor.
Results: Both sensors demonstrated the measurement accuracy within 2 mm. When using the traditional and prototype-based setup methods, the measured photon and electron beam profiles did not show any significant difference. This result suggests the equivalent setup capability when using these two different 3D water phantom setup methods.
Conclusion: The ultrasound sensor-based prototype is demonstrated as a more effective device in maintaining the 3D water phantom setup consistently compared to the traditional method, which is prone to human error, and it will aid in facilitating precise phantom setup during the commissioning and routine quality assurance (QA) of linear accelerators in radiotherapy clinics.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.