使用钆丁醇-葡萄糖溶液和 7.0 T 磁共振成像进行癌症整体可视化。

IF 0.7 Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of Medical Physics Pub Date : 2024-07-01 Epub Date: 2024-09-21 DOI:10.4103/jmp.jmp_42_24
Manabu Watanabe, Eiichi Sato, Jiro Sato, Kazuki Ito, Hodaka Moriyama, Osahiko Hagiwara, Toshiyuki Enomoto, Ryoko Yoshida, Susumu Hayakawa, Yuichi Sato, Sohei Yoshida, Kunihiro Yoshioka, Hiroyuki Nitta
{"title":"使用钆丁醇-葡萄糖溶液和 7.0 T 磁共振成像进行癌症整体可视化。","authors":"Manabu Watanabe, Eiichi Sato, Jiro Sato, Kazuki Ito, Hodaka Moriyama, Osahiko Hagiwara, Toshiyuki Enomoto, Ryoko Yoshida, Susumu Hayakawa, Yuichi Sato, Sohei Yoshida, Kunihiro Yoshioka, Hiroyuki Nitta","doi":"10.4103/jmp.jmp_42_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cancer tissue absorbs 3-8 times more glucose than normal tissue. Therefore, we developed a gadobutrol-glucose solution for 7.0T magnetic resonance imaging to visualize whole cancerous regions at high contrast.</p><p><strong>Methods: </strong>The contrast medium consists of gadobutrol and glucose solutions, and these solutions are mixed before the vein infusion. We used readily available solutions, and the concentrations of the gadobutrol and glucose solutions were 60% and 5.0%, respectively. To visualize the cancerous region, we used two rabbits with VX7 thigh cancer. First, vein injection was carried out using a gadobutrol-saline solution containing 0.3 ml gadobutrol, and T1-weighted imaging (T1WI) was performed. Twenty-four hours after the first experiment, we performed T1WI of the VX7-cancer region using 50.3 mL gadobutrol-glucose solution including 0.3 ml gadobutrol.</p><p><strong>Results: </strong>Compared with T1WI using the gadobutrol-saline solution, the signal intensity of the cancerous region substantially increased using the gadobutrol-glucose solution.</p><p><strong>Conclusion: </strong>We confirmed significant signal-intensity increases in the whole VX7-cancer region of a rabbit thigh utilizing vein infusion of gadobutrol-glucose solution since the gadobutrol molecules were absorbed throughout the cancerous region along with glucose molecules.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 3","pages":"427-432"},"PeriodicalIF":0.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548070/pdf/","citationCount":"0","resultStr":"{\"title\":\"Whole Cancer Visualization using Gadobutrol-glucose Solution and 7.0 T Magnetic Resonance Imaging.\",\"authors\":\"Manabu Watanabe, Eiichi Sato, Jiro Sato, Kazuki Ito, Hodaka Moriyama, Osahiko Hagiwara, Toshiyuki Enomoto, Ryoko Yoshida, Susumu Hayakawa, Yuichi Sato, Sohei Yoshida, Kunihiro Yoshioka, Hiroyuki Nitta\",\"doi\":\"10.4103/jmp.jmp_42_24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Cancer tissue absorbs 3-8 times more glucose than normal tissue. Therefore, we developed a gadobutrol-glucose solution for 7.0T magnetic resonance imaging to visualize whole cancerous regions at high contrast.</p><p><strong>Methods: </strong>The contrast medium consists of gadobutrol and glucose solutions, and these solutions are mixed before the vein infusion. We used readily available solutions, and the concentrations of the gadobutrol and glucose solutions were 60% and 5.0%, respectively. To visualize the cancerous region, we used two rabbits with VX7 thigh cancer. First, vein injection was carried out using a gadobutrol-saline solution containing 0.3 ml gadobutrol, and T1-weighted imaging (T1WI) was performed. Twenty-four hours after the first experiment, we performed T1WI of the VX7-cancer region using 50.3 mL gadobutrol-glucose solution including 0.3 ml gadobutrol.</p><p><strong>Results: </strong>Compared with T1WI using the gadobutrol-saline solution, the signal intensity of the cancerous region substantially increased using the gadobutrol-glucose solution.</p><p><strong>Conclusion: </strong>We confirmed significant signal-intensity increases in the whole VX7-cancer region of a rabbit thigh utilizing vein infusion of gadobutrol-glucose solution since the gadobutrol molecules were absorbed throughout the cancerous region along with glucose molecules.</p>\",\"PeriodicalId\":51719,\"journal\":{\"name\":\"Journal of Medical Physics\",\"volume\":\"49 3\",\"pages\":\"427-432\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548070/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmp.jmp_42_24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_42_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/21 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

导言癌症组织吸收的葡萄糖是正常组织的 3-8 倍。因此,我们开发了一种用于 7.0T 磁共振成像的钆布醇-葡萄糖溶液,以高对比度显示整个癌症区域:造影剂由钆布醇和葡萄糖溶液组成,这些溶液在静脉输注前混合。我们使用现成的溶液,钆布醇和葡萄糖溶液的浓度分别为 60% 和 5.0%。为了观察癌变区域,我们使用了两只患有 VX7 大腿癌的兔子。首先,使用含 0.3 毫升钆布醇的钆布醇-葡萄糖溶液进行静脉注射,并进行 T1 加权成像(T1WI)。第一次实验 24 小时后,我们使用含 0.3 毫升钆布醇的 50.3 毫升钆布醇-葡萄糖溶液对 VX7 癌区进行了 T1WI:与使用钆布醇-盐溶液的 T1WI 相比,使用钆布醇-葡萄糖溶液的癌变区域的信号强度大幅增加:我们证实,通过静脉输注钆布醇-葡萄糖溶液,兔大腿整个 VX7 癌区的信号强度明显增加,因为钆布醇分子与葡萄糖分子一起被整个癌区吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Whole Cancer Visualization using Gadobutrol-glucose Solution and 7.0 T Magnetic Resonance Imaging.

Introduction: Cancer tissue absorbs 3-8 times more glucose than normal tissue. Therefore, we developed a gadobutrol-glucose solution for 7.0T magnetic resonance imaging to visualize whole cancerous regions at high contrast.

Methods: The contrast medium consists of gadobutrol and glucose solutions, and these solutions are mixed before the vein infusion. We used readily available solutions, and the concentrations of the gadobutrol and glucose solutions were 60% and 5.0%, respectively. To visualize the cancerous region, we used two rabbits with VX7 thigh cancer. First, vein injection was carried out using a gadobutrol-saline solution containing 0.3 ml gadobutrol, and T1-weighted imaging (T1WI) was performed. Twenty-four hours after the first experiment, we performed T1WI of the VX7-cancer region using 50.3 mL gadobutrol-glucose solution including 0.3 ml gadobutrol.

Results: Compared with T1WI using the gadobutrol-saline solution, the signal intensity of the cancerous region substantially increased using the gadobutrol-glucose solution.

Conclusion: We confirmed significant signal-intensity increases in the whole VX7-cancer region of a rabbit thigh utilizing vein infusion of gadobutrol-glucose solution since the gadobutrol molecules were absorbed throughout the cancerous region along with glucose molecules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Physics
Journal of Medical Physics RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
1.10
自引率
11.10%
发文量
55
审稿时长
30 weeks
期刊介绍: JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.
期刊最新文献
A Segmentation-based Automated Calculation of Patient Size and Size-specific Dose Estimates in Pediatric Computed Tomography Scans. A Study on Radiation Level at the Treatment Plane Due to Induced Activity in Linear Accelerator Head. Advancements and Applications of Three-dimensional Printing Technology in Surgery. Agar-based Phantom for Evaluating Targeting of High-intensity Focused Ultrasound Systems for Breast Ablation. An Analysis of Radiotherapy Machine Requirements in India: Impact of the Pandemic and Regional Disparities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1