丝状真菌是生产芳香化合物的新兴细胞工厂。

Q1 Agricultural and Biological Sciences Fungal Biology and Biotechnology Pub Date : 2024-11-14 DOI:10.1186/s40694-024-00188-z
Pavithra Umashankar, Yvonne Nygård
{"title":"丝状真菌是生产芳香化合物的新兴细胞工厂。","authors":"Pavithra Umashankar, Yvonne Nygård","doi":"10.1186/s40694-024-00188-z","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial production of aromatic compounds from renewable feedstocks has gained increasing interest as a means towards sustainable production of chemicals. The potential of filamentous fungi for production of aromatic compounds has nonetheless not yet been widely exploited. Notably, many filamentous fungi can naturally break down lignin and metabolize lignin-derived aromatic compounds. A few examples where a fungal cell factory, often of Aspergillus spp., is used to produce an aromatic compound, typically through the conversion of one compound to another, have already been reported. In this review, we summarize fungal biosynthesis of biotechnologically interesting aromatic compounds. The focus is on compounds produced from the shikimate pathway. Biorefinery-relevant efforts for valorizing residual biomass or lignin derived compounds are also discussed. The advancement in engineering tools combined with the increasing amounts of data supporting the discovery of new enzymes and development of new bioprocesses has led to an increased range of potential production hosts and products. This is expected to translate into a wider utilization of fungal cell factories for production of aromatic compounds.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"11 1","pages":"19"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566741/pdf/","citationCount":"0","resultStr":"{\"title\":\"Filamentous fungi as emerging cell factories for the production of aromatic compounds.\",\"authors\":\"Pavithra Umashankar, Yvonne Nygård\",\"doi\":\"10.1186/s40694-024-00188-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial production of aromatic compounds from renewable feedstocks has gained increasing interest as a means towards sustainable production of chemicals. The potential of filamentous fungi for production of aromatic compounds has nonetheless not yet been widely exploited. Notably, many filamentous fungi can naturally break down lignin and metabolize lignin-derived aromatic compounds. A few examples where a fungal cell factory, often of Aspergillus spp., is used to produce an aromatic compound, typically through the conversion of one compound to another, have already been reported. In this review, we summarize fungal biosynthesis of biotechnologically interesting aromatic compounds. The focus is on compounds produced from the shikimate pathway. Biorefinery-relevant efforts for valorizing residual biomass or lignin derived compounds are also discussed. The advancement in engineering tools combined with the increasing amounts of data supporting the discovery of new enzymes and development of new bioprocesses has led to an increased range of potential production hosts and products. This is expected to translate into a wider utilization of fungal cell factories for production of aromatic compounds.</p>\",\"PeriodicalId\":52292,\"journal\":{\"name\":\"Fungal Biology and Biotechnology\",\"volume\":\"11 1\",\"pages\":\"19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566741/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Biology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40694-024-00188-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40694-024-00188-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

利用微生物从可再生原料中生产芳香族化合物,作为一种可持续生产化学品的手段,受到越来越多的关注。然而,丝状真菌生产芳香化合物的潜力尚未得到广泛开发。值得注意的是,许多丝状真菌可以自然分解木质素并代谢木质素衍生的芳香族化合物。已经报道了一些利用真菌细胞工厂(通常是曲霉属)生产芳香化合物的例子,通常是通过将一种化合物转化为另一种化合物。在本综述中,我们总结了真菌生物合成具有生物技术意义的芳香族化合物的情况。重点是莽草酸途径产生的化合物。此外,还讨论了与生物炼制相关的残余生物质或木质素衍生化合物的估值工作。工程工具的进步与支持发现新酶和开发新生物工艺的数据量不断增加相结合,导致潜在生产宿主和产品的范围不断扩大。预计这将转化为更广泛地利用真菌细胞工厂生产芳香化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Filamentous fungi as emerging cell factories for the production of aromatic compounds.

Microbial production of aromatic compounds from renewable feedstocks has gained increasing interest as a means towards sustainable production of chemicals. The potential of filamentous fungi for production of aromatic compounds has nonetheless not yet been widely exploited. Notably, many filamentous fungi can naturally break down lignin and metabolize lignin-derived aromatic compounds. A few examples where a fungal cell factory, often of Aspergillus spp., is used to produce an aromatic compound, typically through the conversion of one compound to another, have already been reported. In this review, we summarize fungal biosynthesis of biotechnologically interesting aromatic compounds. The focus is on compounds produced from the shikimate pathway. Biorefinery-relevant efforts for valorizing residual biomass or lignin derived compounds are also discussed. The advancement in engineering tools combined with the increasing amounts of data supporting the discovery of new enzymes and development of new bioprocesses has led to an increased range of potential production hosts and products. This is expected to translate into a wider utilization of fungal cell factories for production of aromatic compounds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal Biology and Biotechnology
Fungal Biology and Biotechnology Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
10.20
自引率
0.00%
发文量
17
审稿时长
9 weeks
期刊最新文献
Transcriptome response of the white-rot fungus Trametes versicolor to hybrid poplar exhibiting unique lignin chemistry. Uncovering the transcriptional landscape of Fomes fomentarius during fungal-based material production through gene co-expression network analysis. Aspergillus nidulans cell wall integrity kinase, MpkA, impacts cellular phenotypes that alter mycelial-material mechanical properties. CRISPR-Cas9-mediated enhancement of Beauveria bassiana virulence with overproduction of oosporein. Quantification of fungal biomass in mycelium composites made from diverse biogenic side streams.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1