Pedro Herreros , Ana López-Hernández , Miguel Holgado , María Fe Laguna Heras
{"title":"用于抗癌药物注射给药方法的芯片上黑色素瘤模型。","authors":"Pedro Herreros , Ana López-Hernández , Miguel Holgado , María Fe Laguna Heras","doi":"10.1016/j.slast.2024.100219","DOIUrl":null,"url":null,"abstract":"<div><div>The pharmaceutical and cosmetic industries are encountering a challenge in adopting new study models for product development. there has been a growing interest in organ-on-a-chip systems, and particularly for generating skin models. While numerous alternatives replicating high-fidelity skin models exist, there is a notable absence of melanoma study's methodology specifically on these microfluidic chips. This work introduces a novel skin-on-a-chip device featuring two microfluidic chambers, facilitating a 3D cell co-culture involving fibroblasts, keratinocytes, and melanoma cells. The design of this organ-on-a-chip has enabled the administration of the anticancer treatment Gemcitabine using an injection system within the chip. The results of this work have shown a significant impact on the co-culture distribution of cells, decreasing the population of cancerous cells after the administration of Gemcitabine. The work presented in this article demonstrates the effectiveness of the chip and the administration method for testing anti-melanoma therapies and position this technology as an enhanced fidelity model for studying melanoma while providing an alternative for real-time monitoring of drug testing.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 6","pages":"Article 100219"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melanoma-on-a-chip model for anticancer drug injecting delivery method\",\"authors\":\"Pedro Herreros , Ana López-Hernández , Miguel Holgado , María Fe Laguna Heras\",\"doi\":\"10.1016/j.slast.2024.100219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pharmaceutical and cosmetic industries are encountering a challenge in adopting new study models for product development. there has been a growing interest in organ-on-a-chip systems, and particularly for generating skin models. While numerous alternatives replicating high-fidelity skin models exist, there is a notable absence of melanoma study's methodology specifically on these microfluidic chips. This work introduces a novel skin-on-a-chip device featuring two microfluidic chambers, facilitating a 3D cell co-culture involving fibroblasts, keratinocytes, and melanoma cells. The design of this organ-on-a-chip has enabled the administration of the anticancer treatment Gemcitabine using an injection system within the chip. The results of this work have shown a significant impact on the co-culture distribution of cells, decreasing the population of cancerous cells after the administration of Gemcitabine. The work presented in this article demonstrates the effectiveness of the chip and the administration method for testing anti-melanoma therapies and position this technology as an enhanced fidelity model for studying melanoma while providing an alternative for real-time monitoring of drug testing.</div></div>\",\"PeriodicalId\":54248,\"journal\":{\"name\":\"SLAS Technology\",\"volume\":\"29 6\",\"pages\":\"Article 100219\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLAS Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2472630324001018\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324001018","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Melanoma-on-a-chip model for anticancer drug injecting delivery method
The pharmaceutical and cosmetic industries are encountering a challenge in adopting new study models for product development. there has been a growing interest in organ-on-a-chip systems, and particularly for generating skin models. While numerous alternatives replicating high-fidelity skin models exist, there is a notable absence of melanoma study's methodology specifically on these microfluidic chips. This work introduces a novel skin-on-a-chip device featuring two microfluidic chambers, facilitating a 3D cell co-culture involving fibroblasts, keratinocytes, and melanoma cells. The design of this organ-on-a-chip has enabled the administration of the anticancer treatment Gemcitabine using an injection system within the chip. The results of this work have shown a significant impact on the co-culture distribution of cells, decreasing the population of cancerous cells after the administration of Gemcitabine. The work presented in this article demonstrates the effectiveness of the chip and the administration method for testing anti-melanoma therapies and position this technology as an enhanced fidelity model for studying melanoma while providing an alternative for real-time monitoring of drug testing.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.