将机器学习与基于网络的工具相结合,对口腔腺样囊性癌进行个性化预后分析。

IF 2.2 3区 医学 Q2 Dentistry Journal of Stomatology Oral and Maxillofacial Surgery Pub Date : 2024-11-08 DOI:10.1016/j.jormas.2024.102143
Sakhr Alshwayyat, Mesk Alkhatib, Hebah Almahariq, Mustafa Alshwayyat, Tala Abdulsalam Alshwayyat, Hamza Al Salieti, Lina Khasawneh
{"title":"将机器学习与基于网络的工具相结合,对口腔腺样囊性癌进行个性化预后分析。","authors":"Sakhr Alshwayyat, Mesk Alkhatib, Hebah Almahariq, Mustafa Alshwayyat, Tala Abdulsalam Alshwayyat, Hamza Al Salieti, Lina Khasawneh","doi":"10.1016/j.jormas.2024.102143","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Adenoid cystic carcinoma (ACC) of the oral cavity is a rare head and neck cancer. This rarity contributes to the paucity of comprehensive research on this cancer thereby complicating the development of evidence-based treatment strategies. This study aims to use machine learning (ML) techniques to analyze survival outcomes and optimize treatment approaches of ACC.</p><p><strong>Methods: </strong>The SEER database (2000-2020) was used in this study. Cox regression analysis was used to identify the prognostic variables; prognostic models using five ML algorithms were constructed to predict the 5-year survival rates. A validation method incorporating the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to validate the accuracy and reliability of ML models. Also, Kaplan-Meier survival analysis was performed.</p><p><strong>Results: </strong>This study's sample included 645 patients. The most common primary site for ACC was the hard palate, followed by the cheek mucosa. Survival rates varied across treatment groups, with the highest rates observed in patients who underwent surgery only. ML models revealed that the most significant prognostic factors were age, metastasis, and surgery.</p><p><strong>Conclusions: </strong>This study contributes evidence and knowledge to the limited literature on ACC and emphasizes the importance of adjuvant radiotherapy. This study highlights that metastasis and age are key prognostic factors. Furthermore, the developed ML-based web tool offers a novel approach for the personalized prognosis of these rare cancer types.</p>","PeriodicalId":56038,"journal":{"name":"Journal of Stomatology Oral and Maxillofacial Surgery","volume":" ","pages":"102143"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating machine learning with web-based tools for personalized prognosis in oral adenoid cystic carcinoma.\",\"authors\":\"Sakhr Alshwayyat, Mesk Alkhatib, Hebah Almahariq, Mustafa Alshwayyat, Tala Abdulsalam Alshwayyat, Hamza Al Salieti, Lina Khasawneh\",\"doi\":\"10.1016/j.jormas.2024.102143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Adenoid cystic carcinoma (ACC) of the oral cavity is a rare head and neck cancer. This rarity contributes to the paucity of comprehensive research on this cancer thereby complicating the development of evidence-based treatment strategies. This study aims to use machine learning (ML) techniques to analyze survival outcomes and optimize treatment approaches of ACC.</p><p><strong>Methods: </strong>The SEER database (2000-2020) was used in this study. Cox regression analysis was used to identify the prognostic variables; prognostic models using five ML algorithms were constructed to predict the 5-year survival rates. A validation method incorporating the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to validate the accuracy and reliability of ML models. Also, Kaplan-Meier survival analysis was performed.</p><p><strong>Results: </strong>This study's sample included 645 patients. The most common primary site for ACC was the hard palate, followed by the cheek mucosa. Survival rates varied across treatment groups, with the highest rates observed in patients who underwent surgery only. ML models revealed that the most significant prognostic factors were age, metastasis, and surgery.</p><p><strong>Conclusions: </strong>This study contributes evidence and knowledge to the limited literature on ACC and emphasizes the importance of adjuvant radiotherapy. This study highlights that metastasis and age are key prognostic factors. Furthermore, the developed ML-based web tool offers a novel approach for the personalized prognosis of these rare cancer types.</p>\",\"PeriodicalId\":56038,\"journal\":{\"name\":\"Journal of Stomatology Oral and Maxillofacial Surgery\",\"volume\":\" \",\"pages\":\"102143\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stomatology Oral and Maxillofacial Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jormas.2024.102143\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Dentistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stomatology Oral and Maxillofacial Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jormas.2024.102143","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0

摘要

背景:口腔腺样囊性癌(ACC)是一种罕见的头颈部癌症:口腔腺样囊性癌(ACC)是一种罕见的头颈部癌症。这种罕见性导致对这种癌症的综合研究很少,从而使循证治疗策略的制定变得复杂。本研究旨在利用机器学习(ML)技术分析 ACC 的生存结果并优化治疗方法:本研究使用了 SEER 数据库(2000-2020 年)。方法:本研究使用 SEER 数据库(2000-2020 年),采用 Cox 回归分析确定预后变量;使用五种 ML 算法构建预后模型,预测 5 年生存率。研究采用接收者操作特征曲线(ROC)曲线下面积(AUC)的验证方法来验证 ML 模型的准确性和可靠性。此外,还进行了 Kaplan-Meier 生存分析:本研究的样本包括 645 名患者。ACC最常见的原发部位是硬腭,其次是颊粘膜。不同治疗组的存活率各不相同,仅接受手术治疗的患者存活率最高。ML模型显示,最重要的预后因素是年龄、转移和手术:本研究为有限的 ACC 文献提供了证据和知识,并强调了辅助放疗的重要性。本研究强调,转移和年龄是关键的预后因素。此外,所开发的基于 ML 的网络工具为这些罕见癌症类型的个性化预后提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating machine learning with web-based tools for personalized prognosis in oral adenoid cystic carcinoma.

Background: Adenoid cystic carcinoma (ACC) of the oral cavity is a rare head and neck cancer. This rarity contributes to the paucity of comprehensive research on this cancer thereby complicating the development of evidence-based treatment strategies. This study aims to use machine learning (ML) techniques to analyze survival outcomes and optimize treatment approaches of ACC.

Methods: The SEER database (2000-2020) was used in this study. Cox regression analysis was used to identify the prognostic variables; prognostic models using five ML algorithms were constructed to predict the 5-year survival rates. A validation method incorporating the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was used to validate the accuracy and reliability of ML models. Also, Kaplan-Meier survival analysis was performed.

Results: This study's sample included 645 patients. The most common primary site for ACC was the hard palate, followed by the cheek mucosa. Survival rates varied across treatment groups, with the highest rates observed in patients who underwent surgery only. ML models revealed that the most significant prognostic factors were age, metastasis, and surgery.

Conclusions: This study contributes evidence and knowledge to the limited literature on ACC and emphasizes the importance of adjuvant radiotherapy. This study highlights that metastasis and age are key prognostic factors. Furthermore, the developed ML-based web tool offers a novel approach for the personalized prognosis of these rare cancer types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
305
期刊介绍: J Stomatol Oral Maxillofac Surg publishes research papers and techniques - (guest) editorials, original articles, reviews, technical notes, case reports, images, letters to the editor, guidelines - dedicated to enhancing surgical expertise in all fields relevant to oral and maxillofacial surgery: from plastic and reconstructive surgery of the face, oral surgery and medicine, … to dentofacial and maxillofacial orthopedics. Original articles include clinical or laboratory investigations and clinical or equipment reports. Reviews include narrative reviews, systematic reviews and meta-analyses. All manuscripts submitted to the journal are subjected to peer review by international experts, and must: Be written in excellent English, clear and easy to understand, precise and concise; Bring new, interesting, valid information - and improve clinical care or guide future research; Be solely the work of the author(s) stated; Not have been previously published elsewhere and not be under consideration by another journal; Be in accordance with the journal''s Guide for Authors'' instructions: manuscripts that fail to comply with these rules may be returned to the authors without being reviewed. Under no circumstances does the journal guarantee publication before the editorial board makes its final decision. The journal is indexed in the main international databases and is accessible worldwide through the ScienceDirect and ClinicalKey Platforms.
期刊最新文献
Maxillofacial surgery in Angola: overcoming challenges, advancing care through online collaboration. Immediate full-arch rehabilitation of edentulous jaws on 4 or 6 implants using a photogrammetry system: A retrospective study up to 2 years of follow-up. The effectiveness of onodera`s prognostic nutritional in predicting the prognosis of tongue squamous cell carcinoma. The Role of Postoperative Radiation Therapy in Early-stage Tongue Carcinoma. A Systematic Review and Meta-analysis. Facemask Application With Fixed Orthodontic Appliances: 3-Dimensional Finite Element Stress Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1