TSTA:基于线程和 SIMD 的梯形配对/多序列比对方法。

GigaByte (Hong Kong, China) Pub Date : 2024-11-05 eCollection Date: 2024-01-01 DOI:10.46471/gigabyte.141
Peiyu Zong, Wenpeng Deng, Jian Liu, Jue Ruan
{"title":"TSTA:基于线程和 SIMD 的梯形配对/多序列比对方法。","authors":"Peiyu Zong, Wenpeng Deng, Jian Liu, Jue Ruan","doi":"10.46471/gigabyte.141","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid advancements in sequencing length necessitate the adoption of increasingly efficient sequence alignment algorithms. The Needleman-Wunsch method introduces the foundational dynamic-programming matrix calculation for global alignment, which evaluates the overall alignment of sequences. However, this method is known to be highly time-consuming. The proposed TSTA algorithm leverages both vector-level and thread-level parallelism to accelerate pairwise and multiple sequence alignments.</p><p><strong>Availability and implementation: </strong>Source codes are available at https://github.com/bxskdh/TSTA.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte141"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558659/pdf/","citationCount":"0","resultStr":"{\"title\":\"TSTA: thread and SIMD-based trapezoidal pairwise/multiple sequence-alignment method.\",\"authors\":\"Peiyu Zong, Wenpeng Deng, Jian Liu, Jue Ruan\",\"doi\":\"10.46471/gigabyte.141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid advancements in sequencing length necessitate the adoption of increasingly efficient sequence alignment algorithms. The Needleman-Wunsch method introduces the foundational dynamic-programming matrix calculation for global alignment, which evaluates the overall alignment of sequences. However, this method is known to be highly time-consuming. The proposed TSTA algorithm leverages both vector-level and thread-level parallelism to accelerate pairwise and multiple sequence alignments.</p><p><strong>Availability and implementation: </strong>Source codes are available at https://github.com/bxskdh/TSTA.</p>\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\"2024 \",\"pages\":\"gigabyte141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558659/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46471/gigabyte.141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着测序长度的快速发展,有必要采用越来越高效的序列比对算法。Needleman-Wunsch 方法引入了用于全局比对的基础动态编程矩阵计算,该方法对序列的整体比对进行评估。然而,众所周知这种方法非常耗时。所提出的 TSTA 算法利用向量级和线程级并行性来加速成对和多序列比对:源代码可从 https://github.com/bxskdh/TSTA 获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TSTA: thread and SIMD-based trapezoidal pairwise/multiple sequence-alignment method.

The rapid advancements in sequencing length necessitate the adoption of increasingly efficient sequence alignment algorithms. The Needleman-Wunsch method introduces the foundational dynamic-programming matrix calculation for global alignment, which evaluates the overall alignment of sequences. However, this method is known to be highly time-consuming. The proposed TSTA algorithm leverages both vector-level and thread-level parallelism to accelerate pairwise and multiple sequence alignments.

Availability and implementation: Source codes are available at https://github.com/bxskdh/TSTA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Polyploid genome assembly of Cardamine chenopodiifolia. NeuroVar: an open-source tool for the visualization of gene expression and variation data for biomarkers of neurological diseases. Whole-genome re-sequencing of the Baikal seal and other phocid seals for a glimpse into their genetic diversity, demographic history, and phylogeny. Chromosome-level genome assembly and annotation of the crested gecko, Correlophus ciliatus, a lizard incapable of tail regeneration. TSTA: thread and SIMD-based trapezoidal pairwise/multiple sequence-alignment method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1