{"title":"冠壁虎(Correlophus ciliatus)染色体水平的基因组组装和注释,冠壁虎是一种无法进行尾部再生的蜥蜴。","authors":"Marc A Gumangan, Zheyu Pan, Thomas P Lozito","doi":"10.46471/gigabyte.140","DOIUrl":null,"url":null,"abstract":"<p><p>The vast majority of gecko species are capable of tail regeneration, but singular geckos of <i>Correlophus</i>, <i>Uroplatus</i>, and <i>Nephrurus</i> genera are unable to regrow lost tails. Of these non-regenerative geckos, the crested gecko (<i>Correlophus ciliatus</i>) is distinguished by ready availability, ease of care, high productivity, and hybridization potential. These features make <i>C. ciliatus</i> particularly suited as a model for studying the genetic, molecular, and cellular mechanisms underlying loss of tail regeneration capabilities. We report a contiguous genome of <i>C. ciliatus</i> with a total size of 1.65 Gb, 152 scaffolds, L50 of 6, and N50 of 109 Mb. Repetitive content consists of 40.41% of the genome, and a total of 30,780 genes were annotated. Our assembly of the crested gecko genome provides a valuable resource for future comparative genomic studies between non-regenerative and regenerative geckos and other squamate reptiles.</p><p><strong>Findings: </strong>We report genome sequencing, assembly, and annotation for the crested gecko, <i>Correlophus ciliatus</i>.</p>","PeriodicalId":73157,"journal":{"name":"GigaByte (Hong Kong, China)","volume":"2024 ","pages":"gigabyte140"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558660/pdf/","citationCount":"0","resultStr":"{\"title\":\"Chromosome-level genome assembly and annotation of the crested gecko, <i>Correlophus ciliatus</i>, a lizard incapable of tail regeneration.\",\"authors\":\"Marc A Gumangan, Zheyu Pan, Thomas P Lozito\",\"doi\":\"10.46471/gigabyte.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The vast majority of gecko species are capable of tail regeneration, but singular geckos of <i>Correlophus</i>, <i>Uroplatus</i>, and <i>Nephrurus</i> genera are unable to regrow lost tails. Of these non-regenerative geckos, the crested gecko (<i>Correlophus ciliatus</i>) is distinguished by ready availability, ease of care, high productivity, and hybridization potential. These features make <i>C. ciliatus</i> particularly suited as a model for studying the genetic, molecular, and cellular mechanisms underlying loss of tail regeneration capabilities. We report a contiguous genome of <i>C. ciliatus</i> with a total size of 1.65 Gb, 152 scaffolds, L50 of 6, and N50 of 109 Mb. Repetitive content consists of 40.41% of the genome, and a total of 30,780 genes were annotated. Our assembly of the crested gecko genome provides a valuable resource for future comparative genomic studies between non-regenerative and regenerative geckos and other squamate reptiles.</p><p><strong>Findings: </strong>We report genome sequencing, assembly, and annotation for the crested gecko, <i>Correlophus ciliatus</i>.</p>\",\"PeriodicalId\":73157,\"journal\":{\"name\":\"GigaByte (Hong Kong, China)\",\"volume\":\"2024 \",\"pages\":\"gigabyte140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11558660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GigaByte (Hong Kong, China)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46471/gigabyte.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GigaByte (Hong Kong, China)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46471/gigabyte.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
Chromosome-level genome assembly and annotation of the crested gecko, Correlophus ciliatus, a lizard incapable of tail regeneration.
The vast majority of gecko species are capable of tail regeneration, but singular geckos of Correlophus, Uroplatus, and Nephrurus genera are unable to regrow lost tails. Of these non-regenerative geckos, the crested gecko (Correlophus ciliatus) is distinguished by ready availability, ease of care, high productivity, and hybridization potential. These features make C. ciliatus particularly suited as a model for studying the genetic, molecular, and cellular mechanisms underlying loss of tail regeneration capabilities. We report a contiguous genome of C. ciliatus with a total size of 1.65 Gb, 152 scaffolds, L50 of 6, and N50 of 109 Mb. Repetitive content consists of 40.41% of the genome, and a total of 30,780 genes were annotated. Our assembly of the crested gecko genome provides a valuable resource for future comparative genomic studies between non-regenerative and regenerative geckos and other squamate reptiles.
Findings: We report genome sequencing, assembly, and annotation for the crested gecko, Correlophus ciliatus.