黄素还原酶与持久性自由基之间的电子传递增强了 Cr(VI) 的生物还原。

Cheng Yu, Yassine Riahi, Qian Wang, Mengyang Feng, Abdelkader Mohamed, Ke Dai, Peng Cai, Qiaoyun Huang
{"title":"黄素还原酶与持久性自由基之间的电子传递增强了 Cr(VI) 的生物还原。","authors":"Cheng Yu, Yassine Riahi, Qian Wang, Mengyang Feng, Abdelkader Mohamed, Ke Dai, Peng Cai, Qiaoyun Huang","doi":"10.1016/j.chemosphere.2024.143746","DOIUrl":null,"url":null,"abstract":"<p><p>Persistent free radicals (PFRs) in biochar are an important electron shuttle for mediating electron transfer, which has significant impact on the biogeochemical redox reactions. Although the influence of biochar on the extracellular electron transfer (EET) for redox cycle has been extensively studied, the molecular mechanism for promoting the EET with PFRs remains poorly understood. This study investigated the oxygen-centered PFRs-mediated Cr(VI) reduction by Shewanella oneidensis MR-1 (MR-1) and exhibited the molecular mechanism of electron transfer between flavin substances and PFRs. Results showed that the Cr(VI) bioreduction rate by MR-1 increased from 31% to 70% with the addition of biochar. Electrochemical results illustrated that biochar increased biocurrent generation in the Cr(VI) bioreduction process. 3D-EEM and LC/MS spectra indicated that MR-1 secreted the flavin mononucleotide (FMN) reductase that relied on the [H] to provide the electrons. Electron paramagnetic resonance spectra illustrated that PFRs in biochar accepted the electrons from FMN reductase and stored those bioelectrons. Because of the oxidation of FMN, the electron transfer from FMN reductase to PFRs would increase the intracellular reactive oxygen species, which further produced the extracellular ·O<sub>2</sub><sup>-</sup>. The reduced PFRs released the bioelectrons, accelerating the Cr(VI) reduction by ·O<sub>2</sub><sup>-</sup>. Together with the results of the mutant strains experiment, it was found that the EET by c-cytochrome and free radicals contributed to the Cr(VI) bioreduction by 7.1% and 92.9%, respectively. These findings revealed that the PFRs could participate in the EET process and promote the redox reactions, providing a new approach for enhancing the remediation of heavy metal pollution by microorganisms and suggesting the important role of PFRs in the electron transfer process.</p>","PeriodicalId":93933,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cr(VI) bioreduction enhanced by the electron transfer between flavin reductase and persistent free radicals.\",\"authors\":\"Cheng Yu, Yassine Riahi, Qian Wang, Mengyang Feng, Abdelkader Mohamed, Ke Dai, Peng Cai, Qiaoyun Huang\",\"doi\":\"10.1016/j.chemosphere.2024.143746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Persistent free radicals (PFRs) in biochar are an important electron shuttle for mediating electron transfer, which has significant impact on the biogeochemical redox reactions. Although the influence of biochar on the extracellular electron transfer (EET) for redox cycle has been extensively studied, the molecular mechanism for promoting the EET with PFRs remains poorly understood. This study investigated the oxygen-centered PFRs-mediated Cr(VI) reduction by Shewanella oneidensis MR-1 (MR-1) and exhibited the molecular mechanism of electron transfer between flavin substances and PFRs. Results showed that the Cr(VI) bioreduction rate by MR-1 increased from 31% to 70% with the addition of biochar. Electrochemical results illustrated that biochar increased biocurrent generation in the Cr(VI) bioreduction process. 3D-EEM and LC/MS spectra indicated that MR-1 secreted the flavin mononucleotide (FMN) reductase that relied on the [H] to provide the electrons. Electron paramagnetic resonance spectra illustrated that PFRs in biochar accepted the electrons from FMN reductase and stored those bioelectrons. Because of the oxidation of FMN, the electron transfer from FMN reductase to PFRs would increase the intracellular reactive oxygen species, which further produced the extracellular ·O<sub>2</sub><sup>-</sup>. The reduced PFRs released the bioelectrons, accelerating the Cr(VI) reduction by ·O<sub>2</sub><sup>-</sup>. Together with the results of the mutant strains experiment, it was found that the EET by c-cytochrome and free radicals contributed to the Cr(VI) bioreduction by 7.1% and 92.9%, respectively. These findings revealed that the PFRs could participate in the EET process and promote the redox reactions, providing a new approach for enhancing the remediation of heavy metal pollution by microorganisms and suggesting the important role of PFRs in the electron transfer process.</p>\",\"PeriodicalId\":93933,\"journal\":{\"name\":\"Chemosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemosphere.2024.143746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chemosphere.2024.143746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物炭中的持久性自由基(PFR)是介导电子传递的重要电子穿梭器,对生物地球化学氧化还原反应具有重要影响。虽然生物炭对氧化还原循环的胞外电子传递(EET)的影响已被广泛研究,但人们对 PFRs 促进 EET 的分子机制仍知之甚少。本研究研究了以氧为中心的 PFRs 介导的 Shewanella oneidensis MR-1 (MR-1)还原 Cr(VI)的过程,并展示了黄素物质与 PFRs 之间电子传递的分子机制。结果表明,加入生物炭后,MR-1 对六价铬的生物还原率从 31% 提高到 70%。电化学结果表明,在六(Cr)的生物还原过程中,生物炭增加了生物电流的产生。3D-EEM 和 LC/MS 光谱表明,MR-1 分泌的黄素单核苷酸(FMN)还原酶依靠 [H] 提供电子。电子顺磁共振光谱表明,生物炭中的全氟碳化物接受了来自 FMN 还原酶的电子,并储存了这些生物电子。由于 FMN 被氧化,电子从 FMN 还原酶转移到 PFRs 会增加细胞内的活性氧,从而进一步产生细胞外的 -O2-。被还原的 PFR 释放出生物电子,加速了 -O2- 对六价铬的还原。结合突变菌株的实验结果发现,c-细胞色素的 EET 和自由基对六价铬生物还原的贡献率分别为 7.1%和 92.9%。这些发现揭示了PFRs可参与EET过程并促进氧化还原反应,为加强微生物对重金属污染的修复提供了一种新方法,同时也表明了PFRs在电子传递过程中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cr(VI) bioreduction enhanced by the electron transfer between flavin reductase and persistent free radicals.

Persistent free radicals (PFRs) in biochar are an important electron shuttle for mediating electron transfer, which has significant impact on the biogeochemical redox reactions. Although the influence of biochar on the extracellular electron transfer (EET) for redox cycle has been extensively studied, the molecular mechanism for promoting the EET with PFRs remains poorly understood. This study investigated the oxygen-centered PFRs-mediated Cr(VI) reduction by Shewanella oneidensis MR-1 (MR-1) and exhibited the molecular mechanism of electron transfer between flavin substances and PFRs. Results showed that the Cr(VI) bioreduction rate by MR-1 increased from 31% to 70% with the addition of biochar. Electrochemical results illustrated that biochar increased biocurrent generation in the Cr(VI) bioreduction process. 3D-EEM and LC/MS spectra indicated that MR-1 secreted the flavin mononucleotide (FMN) reductase that relied on the [H] to provide the electrons. Electron paramagnetic resonance spectra illustrated that PFRs in biochar accepted the electrons from FMN reductase and stored those bioelectrons. Because of the oxidation of FMN, the electron transfer from FMN reductase to PFRs would increase the intracellular reactive oxygen species, which further produced the extracellular ·O2-. The reduced PFRs released the bioelectrons, accelerating the Cr(VI) reduction by ·O2-. Together with the results of the mutant strains experiment, it was found that the EET by c-cytochrome and free radicals contributed to the Cr(VI) bioreduction by 7.1% and 92.9%, respectively. These findings revealed that the PFRs could participate in the EET process and promote the redox reactions, providing a new approach for enhancing the remediation of heavy metal pollution by microorganisms and suggesting the important role of PFRs in the electron transfer process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fertilizing properties of materials based on opoka and waste concrete after sorption of humic substances from raw reject water. Anxiety caused by chronic exposure to methylisothiazolinone in zebrafish: behavioral analysis, brain histology and gene responses. Corrigendum to Quantification of 68 elements in river water monitoring samples in single-run measurements [Chemosphere, 2023, 320, 138053]. Airborne microplastic pollution detected in the atmosphere of the South Shetland Islands in Antarctica. A critique of Rajendran et al.'s "A critical and recent developments on adsorption technique for removal of heavy metals from wastewater - A review".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1