通过网络药理学、分子对接、体外和体内试验探索五味子苷 A 对非小细胞肺癌的影响。

IF 3.2 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Chemical Biology & Drug Design Pub Date : 2024-11-12 DOI:10.1111/cbdd.70014
Mei Liu, Kai Yang, Huibing Qiu
{"title":"通过网络药理学、分子对接、体外和体内试验探索五味子苷 A 对非小细胞肺癌的影响。","authors":"Mei Liu,&nbsp;Kai Yang,&nbsp;Huibing Qiu","doi":"10.1111/cbdd.70014","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Gomisin A is an active ingredient of <i>Schisandra chinensis</i>. Pre-clinical studies suggest Gomisin A has good anti-cancer activities against a variety of cancers, but its mechanism of action in non-small cell lung cancer (NSCLC) is unclear. This study aims to explore the potential mechanism of Gomisin A in treating NSCLC. The SwissTargetPrediction, CTD, HERB and PharmMapper databases were used to collect related targets of Gomisin A. NSCLC-related genes were obtained using the GEO, CTD, DisGeNET, OMIM, GeneCards, NCBI, and PharmGKB databases. The central targets and potential mechanisms of Gomisin A against NSCLC were screened using network pharmacology and molecular docking. Finally, the therapeutic activity of Gomisin A on NSCLC was verified by experiments. A total of 161 potential targets of Gomisin A against NSCLC were identified. TNF, AKT1, STAT3, and IL6 were identified as the central targets of Gomisin A. The binding energy of Gomisin A and the central targets was less than −5 kcal/mol. Gomisin A could inhibit NSCLC cell viability, migration and invasion and induce cell cycle arrest and apoptosis. Gomisin A also inhibited in vivo metastasis of NSCLC cells. In addition, Gomisin A could also reduce the expression level of the central targets and inhibit the PI3K-Akt signaling pathway. In summary, Gomisin A may be a candidate drug for the treatment of NSCLC, and TNF, AKT1, STAT3, and IL6 are potential targets for Gomisin A in NSCLC treatment, and its therapeutic mechanism may be related to the PI3K-Akt signaling pathway.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"104 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Effect of Gomisin A on Non-Small Cell Lung Cancer With Network Pharmacology, Molecular Docking, In Vitro and In Vivo Assays\",\"authors\":\"Mei Liu,&nbsp;Kai Yang,&nbsp;Huibing Qiu\",\"doi\":\"10.1111/cbdd.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Gomisin A is an active ingredient of <i>Schisandra chinensis</i>. Pre-clinical studies suggest Gomisin A has good anti-cancer activities against a variety of cancers, but its mechanism of action in non-small cell lung cancer (NSCLC) is unclear. This study aims to explore the potential mechanism of Gomisin A in treating NSCLC. The SwissTargetPrediction, CTD, HERB and PharmMapper databases were used to collect related targets of Gomisin A. NSCLC-related genes were obtained using the GEO, CTD, DisGeNET, OMIM, GeneCards, NCBI, and PharmGKB databases. The central targets and potential mechanisms of Gomisin A against NSCLC were screened using network pharmacology and molecular docking. Finally, the therapeutic activity of Gomisin A on NSCLC was verified by experiments. A total of 161 potential targets of Gomisin A against NSCLC were identified. TNF, AKT1, STAT3, and IL6 were identified as the central targets of Gomisin A. The binding energy of Gomisin A and the central targets was less than −5 kcal/mol. Gomisin A could inhibit NSCLC cell viability, migration and invasion and induce cell cycle arrest and apoptosis. Gomisin A also inhibited in vivo metastasis of NSCLC cells. In addition, Gomisin A could also reduce the expression level of the central targets and inhibit the PI3K-Akt signaling pathway. In summary, Gomisin A may be a candidate drug for the treatment of NSCLC, and TNF, AKT1, STAT3, and IL6 are potential targets for Gomisin A in NSCLC treatment, and its therapeutic mechanism may be related to the PI3K-Akt signaling pathway.</p>\\n </div>\",\"PeriodicalId\":143,\"journal\":{\"name\":\"Chemical Biology & Drug Design\",\"volume\":\"104 5\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Biology & Drug Design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70014\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

五味子苷 A 是五味子的一种活性成分。临床前研究表明,五味子苷 A 对多种癌症具有良好的抗癌活性,但其在非小细胞肺癌(NSCLC)中的作用机制尚不清楚。本研究旨在探索五味子苷 A 治疗 NSCLC 的潜在机制。本研究利用SwissTargetPrediction、CTD、HERB和PharmMapper数据库收集五味子素A的相关靶点,并利用GEO、CTD、DisGeNET、OMIM、GeneCards、NCBI和PharmGKB数据库获得NSCLC相关基因。利用网络药理学和分子对接技术筛选了 Gomisin A 对 NSCLC 的中心靶点和潜在机制。最后,通过实验验证了五味子苷 A 对 NSCLC 的治疗活性。共鉴定出 161 个 Gomisin A 对 NSCLC 的潜在靶点。Gomisin A与这些靶点的结合能小于-5 kcal/mol。Gomisin A能抑制NSCLC细胞的活力、迁移和侵袭,并诱导细胞周期停滞和凋亡。大黄素 A 还能抑制 NSCLC 细胞的体内转移。此外,大黄素 A 还能降低中心靶点的表达水平,抑制 PI3K-Akt 信号通路。综上所述,Gomisin A可能是治疗NSCLC的候选药物,TNF、AKT1、STAT3和IL6是Gomisin A治疗NSCLC的潜在靶点,其治疗机制可能与PI3K-Akt信号通路有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Effect of Gomisin A on Non-Small Cell Lung Cancer With Network Pharmacology, Molecular Docking, In Vitro and In Vivo Assays

Gomisin A is an active ingredient of Schisandra chinensis. Pre-clinical studies suggest Gomisin A has good anti-cancer activities against a variety of cancers, but its mechanism of action in non-small cell lung cancer (NSCLC) is unclear. This study aims to explore the potential mechanism of Gomisin A in treating NSCLC. The SwissTargetPrediction, CTD, HERB and PharmMapper databases were used to collect related targets of Gomisin A. NSCLC-related genes were obtained using the GEO, CTD, DisGeNET, OMIM, GeneCards, NCBI, and PharmGKB databases. The central targets and potential mechanisms of Gomisin A against NSCLC were screened using network pharmacology and molecular docking. Finally, the therapeutic activity of Gomisin A on NSCLC was verified by experiments. A total of 161 potential targets of Gomisin A against NSCLC were identified. TNF, AKT1, STAT3, and IL6 were identified as the central targets of Gomisin A. The binding energy of Gomisin A and the central targets was less than −5 kcal/mol. Gomisin A could inhibit NSCLC cell viability, migration and invasion and induce cell cycle arrest and apoptosis. Gomisin A also inhibited in vivo metastasis of NSCLC cells. In addition, Gomisin A could also reduce the expression level of the central targets and inhibit the PI3K-Akt signaling pathway. In summary, Gomisin A may be a candidate drug for the treatment of NSCLC, and TNF, AKT1, STAT3, and IL6 are potential targets for Gomisin A in NSCLC treatment, and its therapeutic mechanism may be related to the PI3K-Akt signaling pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Biology & Drug Design
Chemical Biology & Drug Design 医学-生化与分子生物学
CiteScore
5.10
自引率
3.30%
发文量
164
审稿时长
4.4 months
期刊介绍: Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.
期刊最新文献
Cover Image Edaravone Ameliorate Inflammation in Vitamin D3 and High Fat Diet Induced Atherosclerosis in Rat via Alteration of Inflammatory Pathway and Gut Microbiota Herbacetin Inhibits Human Fructose 1,6-Bisphosphatase Among a Panel of Chromone Derivatives and Pyrazoles, Demonstrating Positive Effects on Insulin-Resistant HepG2 Cells Innovative Photoprotection Strategy: Development of 2-(Benzoxazol-2-Yl)[(2-Hydroxynaphthyl)Diazenyl] Phenol Derivatives for Comprehensive Absorption of UVB, UVA, and Blue Light Novel Fused Pyrimidines as Potent Cyclin-Dependent Kinases Inhibitor for Gastric Adenocarcinoma: Combined In Vitro, In Silico Anticancer Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1