SFNet:用于宽视场 OCT 血管造影视网膜血管分割的空间和频率域网络。

Sien Li, Fei Ma, Fen Yan, Xiwei Dong, Yanfei Guo, Jing Meng, Hongjuan Liu
{"title":"SFNet:用于宽视场 OCT 血管造影视网膜血管分割的空间和频率域网络。","authors":"Sien Li, Fei Ma, Fen Yan, Xiwei Dong, Yanfei Guo, Jing Meng, Hongjuan Liu","doi":"10.1002/jbio.202400420","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic segmentation of blood vessels in fundus images is important to assist ophthalmologists in diagnosis. However, automatic segmentation for Optical Coherence Tomography Angiography (OCTA) blood vessels has not been fully investigated due to various difficulties, such as vessel complexity. In addition, there are only a few publicly available OCTA image data sets for training and validating segmentation algorithms. To address these issues, we constructed a wild-field retinal OCTA segmentation data set, the Retinal Vessels Images in OCTA (REVIO) dataset. Second, we propose a new retinal vessel segmentation network based on spatial and frequency domain networks (SFNet). The proposed model are tested on three benchmark data sets including REVIO, ROSE and OCTA-500. The experimental results show superior performance on segmentation tasks compared to the representative methods.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400420"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SFNet: Spatial and Frequency Domain Networks for Wide-Field OCT Angiography Retinal Vessel Segmentation.\",\"authors\":\"Sien Li, Fei Ma, Fen Yan, Xiwei Dong, Yanfei Guo, Jing Meng, Hongjuan Liu\",\"doi\":\"10.1002/jbio.202400420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic segmentation of blood vessels in fundus images is important to assist ophthalmologists in diagnosis. However, automatic segmentation for Optical Coherence Tomography Angiography (OCTA) blood vessels has not been fully investigated due to various difficulties, such as vessel complexity. In addition, there are only a few publicly available OCTA image data sets for training and validating segmentation algorithms. To address these issues, we constructed a wild-field retinal OCTA segmentation data set, the Retinal Vessels Images in OCTA (REVIO) dataset. Second, we propose a new retinal vessel segmentation network based on spatial and frequency domain networks (SFNet). The proposed model are tested on three benchmark data sets including REVIO, ROSE and OCTA-500. The experimental results show superior performance on segmentation tasks compared to the representative methods.</p>\",\"PeriodicalId\":94068,\"journal\":{\"name\":\"Journal of biophotonics\",\"volume\":\" \",\"pages\":\"e202400420\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biophotonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/jbio.202400420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动分割眼底图像中的血管对于帮助眼科医生进行诊断非常重要。然而,由于血管复杂性等各种困难,光学相干断层扫描(OCTA)血管的自动分割尚未得到充分研究。此外,只有少数公开的 OCTA 图像数据集可用于训练和验证分割算法。为了解决这些问题,我们构建了一个野场视网膜 OCTA 分割数据集,即视网膜血管 OCTA 图像(REVIO)数据集。其次,我们提出了一种基于空间和频域网络(SFNet)的新型视网膜血管分割网络。我们在三个基准数据集(包括 REVIO、ROSE 和 OCTA-500)上测试了所提出的模型。实验结果表明,与其他具有代表性的方法相比,SFNet 在分割任务上具有更优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SFNet: Spatial and Frequency Domain Networks for Wide-Field OCT Angiography Retinal Vessel Segmentation.

Automatic segmentation of blood vessels in fundus images is important to assist ophthalmologists in diagnosis. However, automatic segmentation for Optical Coherence Tomography Angiography (OCTA) blood vessels has not been fully investigated due to various difficulties, such as vessel complexity. In addition, there are only a few publicly available OCTA image data sets for training and validating segmentation algorithms. To address these issues, we constructed a wild-field retinal OCTA segmentation data set, the Retinal Vessels Images in OCTA (REVIO) dataset. Second, we propose a new retinal vessel segmentation network based on spatial and frequency domain networks (SFNet). The proposed model are tested on three benchmark data sets including REVIO, ROSE and OCTA-500. The experimental results show superior performance on segmentation tasks compared to the representative methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Urine Analysed by FTIR, Chemometrics and Machine Learning Methods in Determination Spectroscopy Marker of Prostate Cancer in Urine. A Deep Learning-Based Approach to Characterize Skull Physical Properties: A Phantom Study. Raman Spectroscopic Analysis of Urinary Creatine and Phosphate in Athletes: Pre- and Post-Training Assessment. Estimation of Scattering Properties Modifications Caused by In Vivo Human Skin Optical Clearing Using Line-Field Confocal Optical Coherence Tomography. Feasibility Study of Label-Free Raman Spectroscopy for Parathyroid Gland Identification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1