{"title":"结合了 SWCNTs、Bi2Te3 纳米板和阳离子表面活性剂的 N 型纳米复合薄膜,用于在均匀日光照射下具有自生温度梯度的 Pn 结热电发生器。","authors":"Koki Hoshino, Hisatoshi Yamamoto, Ryota Tamai, Takumi Nakajima, Shugo Miyake, Masayuki Takashiri","doi":"10.3390/s24217060","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible thermoelectric generators (TEGs) with pn-junction single-walled carbon nanotube (SWCNT) films on a polyimide substrate have attracted considerable attention for energy harvesting. This is because they generate electricity through the photo-thermoelectric effect by self-generated temperature gradient under uniform sunlight irradiation. To increase the performance and durability of the pn-junction TEGs, n-type films need to be improved as a priority. In this study, bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) nanoplates synthesized by the solvothermal method were added to the n-type SWCNT films, including a cationic surfactant to form the nanocomposite films because Bi<sub>2</sub>Te<sub>3</sub> has high n-type thermoelectric properties and high durability. The performances of the pn-junction TEGs were investigated by varying the heat treatment times. When the artificial sunlight was uniformly irradiated to the pn-junction TEGs, a stable output voltage of 0.47 mV was observed in the TEG with nanocomposite films heat-treated at 1 h. The output voltage decreased with increasing heat treatment time due to the decrease in the p-type region. The output voltage of TEG at 1 h is higher than that of the TEGs without Bi<sub>2</sub>Te<sub>3</sub> nanoplates under the same conditions. Therefore, the addition of Bi<sub>2</sub>Te<sub>3</sub> nanoplates was found to improve the performance of the pn-junction TEGs. These findings may aid in the development of facile and flexible optical devices, including photodetectors and hybrid devices integrating solar cells.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548406/pdf/","citationCount":"0","resultStr":"{\"title\":\"N-Type Nanocomposite Films Combining SWCNTs, Bi<sub>2</sub>Te<sub>3</sub> Nanoplates, and Cationic Surfactant for Pn-Junction Thermoelectric Generators with Self-Generated Temperature Gradient Under Uniform Sunlight Irradiation.\",\"authors\":\"Koki Hoshino, Hisatoshi Yamamoto, Ryota Tamai, Takumi Nakajima, Shugo Miyake, Masayuki Takashiri\",\"doi\":\"10.3390/s24217060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Flexible thermoelectric generators (TEGs) with pn-junction single-walled carbon nanotube (SWCNT) films on a polyimide substrate have attracted considerable attention for energy harvesting. This is because they generate electricity through the photo-thermoelectric effect by self-generated temperature gradient under uniform sunlight irradiation. To increase the performance and durability of the pn-junction TEGs, n-type films need to be improved as a priority. In this study, bismuth telluride (Bi<sub>2</sub>Te<sub>3</sub>) nanoplates synthesized by the solvothermal method were added to the n-type SWCNT films, including a cationic surfactant to form the nanocomposite films because Bi<sub>2</sub>Te<sub>3</sub> has high n-type thermoelectric properties and high durability. The performances of the pn-junction TEGs were investigated by varying the heat treatment times. When the artificial sunlight was uniformly irradiated to the pn-junction TEGs, a stable output voltage of 0.47 mV was observed in the TEG with nanocomposite films heat-treated at 1 h. The output voltage decreased with increasing heat treatment time due to the decrease in the p-type region. The output voltage of TEG at 1 h is higher than that of the TEGs without Bi<sub>2</sub>Te<sub>3</sub> nanoplates under the same conditions. Therefore, the addition of Bi<sub>2</sub>Te<sub>3</sub> nanoplates was found to improve the performance of the pn-junction TEGs. These findings may aid in the development of facile and flexible optical devices, including photodetectors and hybrid devices integrating solar cells.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217060\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217060","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
N-Type Nanocomposite Films Combining SWCNTs, Bi2Te3 Nanoplates, and Cationic Surfactant for Pn-Junction Thermoelectric Generators with Self-Generated Temperature Gradient Under Uniform Sunlight Irradiation.
Flexible thermoelectric generators (TEGs) with pn-junction single-walled carbon nanotube (SWCNT) films on a polyimide substrate have attracted considerable attention for energy harvesting. This is because they generate electricity through the photo-thermoelectric effect by self-generated temperature gradient under uniform sunlight irradiation. To increase the performance and durability of the pn-junction TEGs, n-type films need to be improved as a priority. In this study, bismuth telluride (Bi2Te3) nanoplates synthesized by the solvothermal method were added to the n-type SWCNT films, including a cationic surfactant to form the nanocomposite films because Bi2Te3 has high n-type thermoelectric properties and high durability. The performances of the pn-junction TEGs were investigated by varying the heat treatment times. When the artificial sunlight was uniformly irradiated to the pn-junction TEGs, a stable output voltage of 0.47 mV was observed in the TEG with nanocomposite films heat-treated at 1 h. The output voltage decreased with increasing heat treatment time due to the decrease in the p-type region. The output voltage of TEG at 1 h is higher than that of the TEGs without Bi2Te3 nanoplates under the same conditions. Therefore, the addition of Bi2Te3 nanoplates was found to improve the performance of the pn-junction TEGs. These findings may aid in the development of facile and flexible optical devices, including photodetectors and hybrid devices integrating solar cells.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.