Guillermo Garcia-Torales, Hector Hugo Torres-Ortega, Ruben Estrada-Marmolejo, Anuar B Beltran-Gonzalez, Marija Strojnik
{"title":"使用光电传感器进行温控 DNA 扩增的热床设计。","authors":"Guillermo Garcia-Torales, Hector Hugo Torres-Ortega, Ruben Estrada-Marmolejo, Anuar B Beltran-Gonzalez, Marija Strojnik","doi":"10.3390/s24217050","DOIUrl":null,"url":null,"abstract":"<p><p>Loop-Mediated Isothermal Loop-Mediated Isothermal Amplification (LAMP) is a widely used technique for nucleic acid amplification due to its high specificity, sensitivity, and rapid results. Advances in microfluidic lab-on-chip (LOC) technology have enabled the integration of LAMP into miniaturized devices, known as μ-LAMP, which require precise thermal control for optimal DNA amplification. This paper introduces a novel thermal bed design using PCB copper traces and FR-4 dielectric materials, providing a reliable, modular, and repairable heating platform. The system achieves accurate and stable temperature control, which is critical for μ-LAMP applications, with temperature deviations within ±1.0 °C. The thermal bed's performance is validated through finite element method (FEM) simulations, showing uniform temperature distribution and a rapid thermal response of 2.5 s to reach the target temperature. These results highlight the system's potential for applications such as disease diagnostics, biological safety, and forensic analysis, where precision and reliability are paramount.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 21","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548344/pdf/","citationCount":"0","resultStr":"{\"title\":\"Thermal Bed Design for Temperature-Controlled DNA Amplification Using Optoelectronic Sensors.\",\"authors\":\"Guillermo Garcia-Torales, Hector Hugo Torres-Ortega, Ruben Estrada-Marmolejo, Anuar B Beltran-Gonzalez, Marija Strojnik\",\"doi\":\"10.3390/s24217050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loop-Mediated Isothermal Loop-Mediated Isothermal Amplification (LAMP) is a widely used technique for nucleic acid amplification due to its high specificity, sensitivity, and rapid results. Advances in microfluidic lab-on-chip (LOC) technology have enabled the integration of LAMP into miniaturized devices, known as μ-LAMP, which require precise thermal control for optimal DNA amplification. This paper introduces a novel thermal bed design using PCB copper traces and FR-4 dielectric materials, providing a reliable, modular, and repairable heating platform. The system achieves accurate and stable temperature control, which is critical for μ-LAMP applications, with temperature deviations within ±1.0 °C. The thermal bed's performance is validated through finite element method (FEM) simulations, showing uniform temperature distribution and a rapid thermal response of 2.5 s to reach the target temperature. These results highlight the system's potential for applications such as disease diagnostics, biological safety, and forensic analysis, where precision and reliability are paramount.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"24 21\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11548344/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s24217050\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24217050","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
环路介导等温环路介导等温扩增(LAMP)因其特异性高、灵敏度高、结果快速而被广泛应用于核酸扩增技术。微流控芯片实验室(LOC)技术的进步使 LAMP 能够集成到微型设备中,即 μ-LAMP,这种设备需要精确的热控制以获得最佳的 DNA 扩增效果。本文介绍了一种使用 PCB 铜线和 FR-4 介电材料的新型热床设计,提供了一个可靠、模块化和可维修的加热平台。该系统实现了对μ-LAMP 应用至关重要的精确而稳定的温度控制,温度偏差在 ±1.0 °C 以内。有限元法(FEM)模拟验证了热床的性能,显示出均匀的温度分布和 2.5 秒内达到目标温度的快速热反应。这些结果凸显了该系统在疾病诊断、生物安全和法医分析等应用中的潜力,在这些应用中,精度和可靠性是至关重要的。
Thermal Bed Design for Temperature-Controlled DNA Amplification Using Optoelectronic Sensors.
Loop-Mediated Isothermal Loop-Mediated Isothermal Amplification (LAMP) is a widely used technique for nucleic acid amplification due to its high specificity, sensitivity, and rapid results. Advances in microfluidic lab-on-chip (LOC) technology have enabled the integration of LAMP into miniaturized devices, known as μ-LAMP, which require precise thermal control for optimal DNA amplification. This paper introduces a novel thermal bed design using PCB copper traces and FR-4 dielectric materials, providing a reliable, modular, and repairable heating platform. The system achieves accurate and stable temperature control, which is critical for μ-LAMP applications, with temperature deviations within ±1.0 °C. The thermal bed's performance is validated through finite element method (FEM) simulations, showing uniform temperature distribution and a rapid thermal response of 2.5 s to reach the target temperature. These results highlight the system's potential for applications such as disease diagnostics, biological safety, and forensic analysis, where precision and reliability are paramount.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.