PEP:自主驾驶的政策嵌入式轨迹规划

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-11-01 DOI:10.1109/LRA.2024.3490377
Dongkun Zhang;Jiaming Liang;Sha Lu;Ke Guo;Qi Wang;Rong Xiong;Zhenwei Miao;Yue Wang
{"title":"PEP:自主驾驶的政策嵌入式轨迹规划","authors":"Dongkun Zhang;Jiaming Liang;Sha Lu;Ke Guo;Qi Wang;Rong Xiong;Zhenwei Miao;Yue Wang","doi":"10.1109/LRA.2024.3490377","DOIUrl":null,"url":null,"abstract":"Autonomous driving demands proficient trajectory planning to ensure safety and comfort. This letter introduces Policy-Embedded Planner (PEP), a novel framework that enhances closed-loop performance of imitation learning (IL) based planners by embedding a neural policy for sequential ego pose generation, leveraging predicted trajectories of traffic agents. PEP addresses the challenges of distribution shift and causal confusion by decomposing multi-step planning into single-step policy rollouts, applying a coordinate transformation technique to simplify training. PEP allows for the parallel generation of multi-modal candidate trajectories and incorporates both neural and rule-based scoring functions for trajectory selection. To mitigate the negative effects of prediction error on closed-loop performance, we propose an information-mixing mechanism that alternates the utilization of traffic agents' predicted and ground-truth information during training. Experimental validations on nuPlan benchmark highlight PEP's superiority over IL- and rule-based state-of-the-art methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11361-11368"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEP: Policy-Embedded Trajectory Planning for Autonomous Driving\",\"authors\":\"Dongkun Zhang;Jiaming Liang;Sha Lu;Ke Guo;Qi Wang;Rong Xiong;Zhenwei Miao;Yue Wang\",\"doi\":\"10.1109/LRA.2024.3490377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous driving demands proficient trajectory planning to ensure safety and comfort. This letter introduces Policy-Embedded Planner (PEP), a novel framework that enhances closed-loop performance of imitation learning (IL) based planners by embedding a neural policy for sequential ego pose generation, leveraging predicted trajectories of traffic agents. PEP addresses the challenges of distribution shift and causal confusion by decomposing multi-step planning into single-step policy rollouts, applying a coordinate transformation technique to simplify training. PEP allows for the parallel generation of multi-modal candidate trajectories and incorporates both neural and rule-based scoring functions for trajectory selection. To mitigate the negative effects of prediction error on closed-loop performance, we propose an information-mixing mechanism that alternates the utilization of traffic agents' predicted and ground-truth information during training. Experimental validations on nuPlan benchmark highlight PEP's superiority over IL- and rule-based state-of-the-art methods.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11361-11368\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740797/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740797/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶需要熟练的轨迹规划,以确保安全性和舒适性。这篇文章介绍了政策嵌入式规划器(PEP),这是一种新颖的框架,通过嵌入神经政策,利用交通参与者的预测轨迹,按顺序生成自我姿态,从而提高基于模仿学习(IL)的规划器的闭环性能。PEP 将多步规划分解为单步策略滚动,应用坐标变换技术简化训练,从而解决了分布偏移和因果混淆的难题。PEP 允许并行生成多模式候选轨迹,并结合神经和基于规则的评分函数进行轨迹选择。为了减轻预测误差对闭环性能的负面影响,我们提出了一种信息混合机制,在训练过程中交替使用交通代理的预测信息和地面实况信息。在 nuPlan 基准上的实验验证凸显了 PEP 优于基于 IL 和规则的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PEP: Policy-Embedded Trajectory Planning for Autonomous Driving
Autonomous driving demands proficient trajectory planning to ensure safety and comfort. This letter introduces Policy-Embedded Planner (PEP), a novel framework that enhances closed-loop performance of imitation learning (IL) based planners by embedding a neural policy for sequential ego pose generation, leveraging predicted trajectories of traffic agents. PEP addresses the challenges of distribution shift and causal confusion by decomposing multi-step planning into single-step policy rollouts, applying a coordinate transformation technique to simplify training. PEP allows for the parallel generation of multi-modal candidate trajectories and incorporates both neural and rule-based scoring functions for trajectory selection. To mitigate the negative effects of prediction error on closed-loop performance, we propose an information-mixing mechanism that alternates the utilization of traffic agents' predicted and ground-truth information during training. Experimental validations on nuPlan benchmark highlight PEP's superiority over IL- and rule-based state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment CMGFA: A BEV Segmentation Model Based on Cross-Modal Group-Mix Attention Feature Aggregator Visual-Inertial Localization Leveraging Skylight Polarization Pattern Constraints Demonstration Data-Driven Parameter Adjustment for Trajectory Planning in Highly Constrained Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1