具有卓越热测量能力的双参数 G 型同轴热电偶

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-10-18 DOI:10.1109/JSEN.2024.3465606
Jun Chen;Zhixuan Su;Runze Lin;Kai Yang;Shuntao Hu;Shilong Liu;Yue Chen;Yihang Zhang;Chenyang Xue;Zhenyin Hai;Junyang Li
{"title":"具有卓越热测量能力的双参数 G 型同轴热电偶","authors":"Jun Chen;Zhixuan Su;Runze Lin;Kai Yang;Shuntao Hu;Shilong Liu;Yue Chen;Yihang Zhang;Chenyang Xue;Zhenyin Hai;Junyang Li","doi":"10.1109/JSEN.2024.3465606","DOIUrl":null,"url":null,"abstract":"In the context of hyperthermal aerodynamics, where the heat transfer rate changes rapidly, there is an urgent need to obtain thermal data on the surface of structures. To address this, we propose a novel G-type coaxial dual-parametric sensor that utilizes the Seebeck thermoelectric effect to measure the temperature of high-temperature airflows and derive heat fluxes based on the 1-D semi-infinite body assumption method. In a laboratory environment, we performed static calibration of the sensor’s performance indices in the temperature range of \n<inline-formula> <tex-math>$200~^{\\circ }$ </tex-math></inline-formula>\nC–\n<inline-formula> <tex-math>$1500~^{\\circ }$ </tex-math></inline-formula>\nC. The calibration results of voltage versus temperature indicate that the sensitivity of the sensor is approximately \n<inline-formula> <tex-math>$21~\\mu $ </tex-math></inline-formula>\nV/°C, with a fitting coefficient exceeding 0.9999. Compared to the national standard for G-type thermocouples regarding the temperature-voltage relationship, the maximum voltage deviation is only 0.1 mV. Additionally, when we calibrated the heat flux of the sensor using a laser calibration method, the sensor monitored a heat flux upper limit of over 21 MW/m2, with an absolute error of less than 1.5%, corresponding to a heat flux response time of 1.15 ms. Finally, the G-type coaxial sensor, prepared using the natural growth method for the insulating layer, successfully achieved dual-parameter monitoring of structural surface temperature and heat flux exceeding \n<inline-formula> <tex-math>$1250~^{\\circ }$ </tex-math></inline-formula>\nC and 5.1 MW/m2 in the high-temperature environment of supersonic flame washout. This provides a feasible solution for the accurate acquisition of structural surface thermal data in various rocket motor components.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36403-36411"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dual-Parametric G-Type Coaxial Thermocouple With Superior Thermal Measurement Capabilities\",\"authors\":\"Jun Chen;Zhixuan Su;Runze Lin;Kai Yang;Shuntao Hu;Shilong Liu;Yue Chen;Yihang Zhang;Chenyang Xue;Zhenyin Hai;Junyang Li\",\"doi\":\"10.1109/JSEN.2024.3465606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of hyperthermal aerodynamics, where the heat transfer rate changes rapidly, there is an urgent need to obtain thermal data on the surface of structures. To address this, we propose a novel G-type coaxial dual-parametric sensor that utilizes the Seebeck thermoelectric effect to measure the temperature of high-temperature airflows and derive heat fluxes based on the 1-D semi-infinite body assumption method. In a laboratory environment, we performed static calibration of the sensor’s performance indices in the temperature range of \\n<inline-formula> <tex-math>$200~^{\\\\circ }$ </tex-math></inline-formula>\\nC–\\n<inline-formula> <tex-math>$1500~^{\\\\circ }$ </tex-math></inline-formula>\\nC. The calibration results of voltage versus temperature indicate that the sensitivity of the sensor is approximately \\n<inline-formula> <tex-math>$21~\\\\mu $ </tex-math></inline-formula>\\nV/°C, with a fitting coefficient exceeding 0.9999. Compared to the national standard for G-type thermocouples regarding the temperature-voltage relationship, the maximum voltage deviation is only 0.1 mV. Additionally, when we calibrated the heat flux of the sensor using a laser calibration method, the sensor monitored a heat flux upper limit of over 21 MW/m2, with an absolute error of less than 1.5%, corresponding to a heat flux response time of 1.15 ms. Finally, the G-type coaxial sensor, prepared using the natural growth method for the insulating layer, successfully achieved dual-parameter monitoring of structural surface temperature and heat flux exceeding \\n<inline-formula> <tex-math>$1250~^{\\\\circ }$ </tex-math></inline-formula>\\nC and 5.1 MW/m2 in the high-temperature environment of supersonic flame washout. This provides a feasible solution for the accurate acquisition of structural surface thermal data in various rocket motor components.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"36403-36411\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10723239/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10723239/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在热传导率快速变化的超热空气动力学中,迫切需要获得结构表面的热数据。为此,我们提出了一种新型 G 型同轴双参数传感器,利用塞贝克热电效应测量高温气流的温度,并根据一维半无限体假设法推导热通量。在实验室环境下,我们在 200~^{\circ }$ C- $1500~^{\circ }$ C 的温度范围内对传感器的性能指标进行了静态校准。电压与温度的校准结果表明,传感器的灵敏度约为 21~\mu $ V/°C,拟合系数超过 0.9999。与有关温度-电压关系的 G 型热电偶国家标准相比,最大电压偏差仅为 0.1 mV。此外,当我们使用激光校准法校准传感器的热通量时,传感器监测到的热通量上限超过 21 MW/m2,绝对误差小于 1.5%,对应的热通量响应时间为 1.15 ms。最后,采用绝缘层自然生长法制备的 G 型同轴传感器在超音速火焰冲刷的高温环境中成功实现了对超过 1250~^{\circ }$ C 和 5.1 MW/m2 的结构表面温度和热通量的双参数监测。这为精确获取各种火箭发动机部件的结构表面热数据提供了可行的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Dual-Parametric G-Type Coaxial Thermocouple With Superior Thermal Measurement Capabilities
In the context of hyperthermal aerodynamics, where the heat transfer rate changes rapidly, there is an urgent need to obtain thermal data on the surface of structures. To address this, we propose a novel G-type coaxial dual-parametric sensor that utilizes the Seebeck thermoelectric effect to measure the temperature of high-temperature airflows and derive heat fluxes based on the 1-D semi-infinite body assumption method. In a laboratory environment, we performed static calibration of the sensor’s performance indices in the temperature range of $200~^{\circ }$ C– $1500~^{\circ }$ C. The calibration results of voltage versus temperature indicate that the sensitivity of the sensor is approximately $21~\mu $ V/°C, with a fitting coefficient exceeding 0.9999. Compared to the national standard for G-type thermocouples regarding the temperature-voltage relationship, the maximum voltage deviation is only 0.1 mV. Additionally, when we calibrated the heat flux of the sensor using a laser calibration method, the sensor monitored a heat flux upper limit of over 21 MW/m2, with an absolute error of less than 1.5%, corresponding to a heat flux response time of 1.15 ms. Finally, the G-type coaxial sensor, prepared using the natural growth method for the insulating layer, successfully achieved dual-parameter monitoring of structural surface temperature and heat flux exceeding $1250~^{\circ }$ C and 5.1 MW/m2 in the high-temperature environment of supersonic flame washout. This provides a feasible solution for the accurate acquisition of structural surface thermal data in various rocket motor components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Journal Publication Information Table of Contents Front Cover IEEE Sensors Council A Clustered Routing Algorithm Based on Forwarding Mechanism Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1