Simon Michael Laube;Christoph Gasser;Kerstin Schneider-Hornstein;Horst Zimmermann
{"title":"带大型 PIN 光电二极管的高灵敏度集成光学接收器","authors":"Simon Michael Laube;Christoph Gasser;Kerstin Schneider-Hornstein;Horst Zimmermann","doi":"10.1109/JPHOT.2024.3487302","DOIUrl":null,"url":null,"abstract":"This paper presents a highly-sensitive monolithic optoelectronic receiver in \n<inline-formula><tex-math>$\\mathbf{180\\, {nm}}$</tex-math></inline-formula>\n CMOS. An integrating front-end with noise matching via an negative Miller capacitance is proposed, to reduce the power penalty imposed by large PIN photodiodes (PDs). Three new multi-dot PIN PDs are integrated with the front-end. At a wavelength of \n<inline-formula><tex-math>$\\mathbf{642\\, {nm}}$</tex-math></inline-formula>\n and reverse bias of \n<inline-formula><tex-math>$\\mathbf {8}\\,\\mathbf {V}$</tex-math></inline-formula>\n, their responsivity (capacitance) is \n<inline-formula><tex-math>$\\mathbf {0.38\\, {A/W}}$</tex-math></inline-formula>\n (\n<inline-formula><tex-math>$\\mathbf{29\\, {fF}}$</tex-math></inline-formula>\n), \n<inline-formula><tex-math>$\\mathbf {0.36\\, {A/W}}$</tex-math></inline-formula>\n (\n<inline-formula><tex-math>$\\mathbf{33\\, {fF}}$</tex-math></inline-formula>\n), and \n<inline-formula><tex-math>$\\mathbf {0.43\\, {A/W}}$</tex-math></inline-formula>\n (\n<inline-formula><tex-math>$\\mathbf{123\\, {fF}}$</tex-math></inline-formula>\n), respectively. Compared to our previous integrating PIN receivers, the light-sensitive area is up to 30 times larger. At a supply voltage of \n<inline-formula><tex-math>$\\mathbf {1.8\\, {V}}$</tex-math></inline-formula>\n, wavelength of \n<inline-formula><tex-math>$\\mathbf{642\\, {nm}}$</tex-math></inline-formula>\n, bit rate of \n<inline-formula><tex-math>$\\mathbf {20\\, {Mbit/s}}$</tex-math></inline-formula>\n, and reference \n<inline-formula><tex-math>${\\mathbf{BER}=2\\cdot 10^{-3}}$</tex-math></inline-formula>\n, the prototype receiver achieves a sensitivity of \n<inline-formula><tex-math>$\\mathbf {-55.4\\, {dBm}}$</tex-math></inline-formula>\n for the first PD, \n<inline-formula><tex-math>$\\mathbf {-56.5\\, {dBm}}$</tex-math></inline-formula>\n for the second PD, and \n<inline-formula><tex-math>$\\mathbf {-53.4\\, {dBm}}$</tex-math></inline-formula>\n for the third PD. The best sensitivity equals a distance of only \n<inline-formula><tex-math>$\\mathbf {21.2\\, {dB}}$</tex-math></inline-formula>\n to the quantum limit.","PeriodicalId":13204,"journal":{"name":"IEEE Photonics Journal","volume":"16 6","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737098","citationCount":"0","resultStr":"{\"title\":\"Highly-Sensitive Integrating Optical Receiver With Large PIN Photodiode\",\"authors\":\"Simon Michael Laube;Christoph Gasser;Kerstin Schneider-Hornstein;Horst Zimmermann\",\"doi\":\"10.1109/JPHOT.2024.3487302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a highly-sensitive monolithic optoelectronic receiver in \\n<inline-formula><tex-math>$\\\\mathbf{180\\\\, {nm}}$</tex-math></inline-formula>\\n CMOS. An integrating front-end with noise matching via an negative Miller capacitance is proposed, to reduce the power penalty imposed by large PIN photodiodes (PDs). Three new multi-dot PIN PDs are integrated with the front-end. At a wavelength of \\n<inline-formula><tex-math>$\\\\mathbf{642\\\\, {nm}}$</tex-math></inline-formula>\\n and reverse bias of \\n<inline-formula><tex-math>$\\\\mathbf {8}\\\\,\\\\mathbf {V}$</tex-math></inline-formula>\\n, their responsivity (capacitance) is \\n<inline-formula><tex-math>$\\\\mathbf {0.38\\\\, {A/W}}$</tex-math></inline-formula>\\n (\\n<inline-formula><tex-math>$\\\\mathbf{29\\\\, {fF}}$</tex-math></inline-formula>\\n), \\n<inline-formula><tex-math>$\\\\mathbf {0.36\\\\, {A/W}}$</tex-math></inline-formula>\\n (\\n<inline-formula><tex-math>$\\\\mathbf{33\\\\, {fF}}$</tex-math></inline-formula>\\n), and \\n<inline-formula><tex-math>$\\\\mathbf {0.43\\\\, {A/W}}$</tex-math></inline-formula>\\n (\\n<inline-formula><tex-math>$\\\\mathbf{123\\\\, {fF}}$</tex-math></inline-formula>\\n), respectively. Compared to our previous integrating PIN receivers, the light-sensitive area is up to 30 times larger. At a supply voltage of \\n<inline-formula><tex-math>$\\\\mathbf {1.8\\\\, {V}}$</tex-math></inline-formula>\\n, wavelength of \\n<inline-formula><tex-math>$\\\\mathbf{642\\\\, {nm}}$</tex-math></inline-formula>\\n, bit rate of \\n<inline-formula><tex-math>$\\\\mathbf {20\\\\, {Mbit/s}}$</tex-math></inline-formula>\\n, and reference \\n<inline-formula><tex-math>${\\\\mathbf{BER}=2\\\\cdot 10^{-3}}$</tex-math></inline-formula>\\n, the prototype receiver achieves a sensitivity of \\n<inline-formula><tex-math>$\\\\mathbf {-55.4\\\\, {dBm}}$</tex-math></inline-formula>\\n for the first PD, \\n<inline-formula><tex-math>$\\\\mathbf {-56.5\\\\, {dBm}}$</tex-math></inline-formula>\\n for the second PD, and \\n<inline-formula><tex-math>$\\\\mathbf {-53.4\\\\, {dBm}}$</tex-math></inline-formula>\\n for the third PD. The best sensitivity equals a distance of only \\n<inline-formula><tex-math>$\\\\mathbf {21.2\\\\, {dB}}$</tex-math></inline-formula>\\n to the quantum limit.\",\"PeriodicalId\":13204,\"journal\":{\"name\":\"IEEE Photonics Journal\",\"volume\":\"16 6\",\"pages\":\"1-9\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737098\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Photonics Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10737098/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Journal","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10737098/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Highly-Sensitive Integrating Optical Receiver With Large PIN Photodiode
This paper presents a highly-sensitive monolithic optoelectronic receiver in
$\mathbf{180\, {nm}}$
CMOS. An integrating front-end with noise matching via an negative Miller capacitance is proposed, to reduce the power penalty imposed by large PIN photodiodes (PDs). Three new multi-dot PIN PDs are integrated with the front-end. At a wavelength of
$\mathbf{642\, {nm}}$
and reverse bias of
$\mathbf {8}\,\mathbf {V}$
, their responsivity (capacitance) is
$\mathbf {0.38\, {A/W}}$
(
$\mathbf{29\, {fF}}$
),
$\mathbf {0.36\, {A/W}}$
(
$\mathbf{33\, {fF}}$
), and
$\mathbf {0.43\, {A/W}}$
(
$\mathbf{123\, {fF}}$
), respectively. Compared to our previous integrating PIN receivers, the light-sensitive area is up to 30 times larger. At a supply voltage of
$\mathbf {1.8\, {V}}$
, wavelength of
$\mathbf{642\, {nm}}$
, bit rate of
$\mathbf {20\, {Mbit/s}}$
, and reference
${\mathbf{BER}=2\cdot 10^{-3}}$
, the prototype receiver achieves a sensitivity of
$\mathbf {-55.4\, {dBm}}$
for the first PD,
$\mathbf {-56.5\, {dBm}}$
for the second PD, and
$\mathbf {-53.4\, {dBm}}$
for the third PD. The best sensitivity equals a distance of only
$\mathbf {21.2\, {dB}}$
to the quantum limit.
期刊介绍:
Breakthroughs in the generation of light and in its control and utilization have given rise to the field of Photonics, a rapidly expanding area of science and technology with major technological and economic impact. Photonics integrates quantum electronics and optics to accelerate progress in the generation of novel photon sources and in their utilization in emerging applications at the micro and nano scales spanning from the far-infrared/THz to the x-ray region of the electromagnetic spectrum. IEEE Photonics Journal is an online-only journal dedicated to the rapid disclosure of top-quality peer-reviewed research at the forefront of all areas of photonics. Contributions addressing issues ranging from fundamental understanding to emerging technologies and applications are within the scope of the Journal. The Journal includes topics in: Photon sources from far infrared to X-rays, Photonics materials and engineered photonic structures, Integrated optics and optoelectronic, Ultrafast, attosecond, high field and short wavelength photonics, Biophotonics, including DNA photonics, Nanophotonics, Magnetophotonics, Fundamentals of light propagation and interaction; nonlinear effects, Optical data storage, Fiber optics and optical communications devices, systems, and technologies, Micro Opto Electro Mechanical Systems (MOEMS), Microwave photonics, Optical Sensors.