为支持延迟感知的无人机 MTC 数据采集网络提供联合集群和三维无人机部署功能

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-10-28 DOI:10.1109/LSENS.2024.3487009
Lingfeng Shen;Huanran Zhang;Ning Wang;Ying Cui;Xiang Cheng;Xiaomin Mu
{"title":"为支持延迟感知的无人机 MTC 数据采集网络提供联合集群和三维无人机部署功能","authors":"Lingfeng Shen;Huanran Zhang;Ning Wang;Ying Cui;Xiang Cheng;Xiaomin Mu","doi":"10.1109/LSENS.2024.3487009","DOIUrl":null,"url":null,"abstract":"The design of timely data collection for a machine-type communication (MTC) network by unmanned-aerial-vehicle (UAV) platform is investigated. The ground-based MTC devices are clustered for efficient service, and the UAV station's deployment in the 3-D space is optimized. The corresponding mission time minimization problem is formulated as a coupled mixed-integer nonlinear program. For tractability, the original problem is decomposed into two subproblems respectively dealing with clustering-hovering optimization and intercluster UAV traveling path minimization. An alternating clustering-hovering optimization (ACH) and ant colony optimization (ACO) solution approach is proposed accordingly. Simulations are conducted to validate the superiority of the proposed ACH–ACO scheme over the scheme based on \n<inline-formula><tex-math>$k$</tex-math></inline-formula>\n-means clustering.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Clustering and 3-D UAV Deployment for Delay-Aware UAV-Enabled MTC Data Collection Networks\",\"authors\":\"Lingfeng Shen;Huanran Zhang;Ning Wang;Ying Cui;Xiang Cheng;Xiaomin Mu\",\"doi\":\"10.1109/LSENS.2024.3487009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of timely data collection for a machine-type communication (MTC) network by unmanned-aerial-vehicle (UAV) platform is investigated. The ground-based MTC devices are clustered for efficient service, and the UAV station's deployment in the 3-D space is optimized. The corresponding mission time minimization problem is formulated as a coupled mixed-integer nonlinear program. For tractability, the original problem is decomposed into two subproblems respectively dealing with clustering-hovering optimization and intercluster UAV traveling path minimization. An alternating clustering-hovering optimization (ACH) and ant colony optimization (ACO) solution approach is proposed accordingly. Simulations are conducted to validate the superiority of the proposed ACH–ACO scheme over the scheme based on \\n<inline-formula><tex-math>$k$</tex-math></inline-formula>\\n-means clustering.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"8 12\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10736673/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10736673/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

研究了无人机(UAV)平台为机器型通信(MTC)网络及时收集数据的设计。为了提供高效服务,对地面 MTC 设备进行了集群,并优化了无人机站在三维空间中的部署。相应的任务时间最小化问题被表述为一个耦合混合整数非线性程序。为了便于理解,原问题被分解成两个子问题,分别处理集群徘徊优化和集群间无人机飞行路径最小化。相应地,提出了一种交替聚类徘徊优化(ACH)和蚁群优化(ACO)的解决方法。通过仿真验证了所提出的 ACH-ACO 方案优于基于 $k$-means 聚类的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Clustering and 3-D UAV Deployment for Delay-Aware UAV-Enabled MTC Data Collection Networks
The design of timely data collection for a machine-type communication (MTC) network by unmanned-aerial-vehicle (UAV) platform is investigated. The ground-based MTC devices are clustered for efficient service, and the UAV station's deployment in the 3-D space is optimized. The corresponding mission time minimization problem is formulated as a coupled mixed-integer nonlinear program. For tractability, the original problem is decomposed into two subproblems respectively dealing with clustering-hovering optimization and intercluster UAV traveling path minimization. An alternating clustering-hovering optimization (ACH) and ant colony optimization (ACO) solution approach is proposed accordingly. Simulations are conducted to validate the superiority of the proposed ACH–ACO scheme over the scheme based on $k$ -means clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1