{"title":"基于表面等离子体共振的高灵敏度中空芯纤维多巴胺传感器(采用双重识别策略","authors":"Yangyang Xu;Xian Zhang;Xiao-Song Zhu;Yi-Wei Shi","doi":"10.1109/JSEN.2024.3473612","DOIUrl":null,"url":null,"abstract":"The dual recognition method has been applied extensively as an attractive strategy, which effectively improved the specificity of detection. Herein, a novel silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor based on a dual-recognition strategy for high-sensitivity detection of dopamine (DA) was presented. The 4-mercaptophenylboronic acid (PMBA) monolayer was self-assembled on the silver film surface in the sensor as the recognition layer. Meanwhile, 4-mercaptobenzoic acid (4-MBA)-modified gold nanoparticles (AuNPs) were adopted as the signal amplification tag to enhance the wavelength shift of the SPR phenomenon excited by the light transmitted in the wall of the HF sensor. Experiments of detection for DA were taken in the concentration range of 0.1 nM–\n<inline-formula> <tex-math>$10~\\mu \\text { M}$ </tex-math></inline-formula>\n to investigate the performance of the biosensor. The influences of concentrations of palladium chloride (PdCl2) in pretreatment and the AuNPs size were investigated to improve the performance of the HF SPR sensor. The experimental results showed that the limit of detection (LOD) for DA achieved as low as 0.1 nM. The presented HF SPR sensor with a dual-recognition structure based on self-assembled recognition monolayer and AuNPs shows a large potential for the detection of small biomolecules in biosensing.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36923-36929"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Plasmon Resonance-Based Highly Sensitive Hollow-Core Fiber Dopamine Sensor Using Dual-Recognition Strategy\",\"authors\":\"Yangyang Xu;Xian Zhang;Xiao-Song Zhu;Yi-Wei Shi\",\"doi\":\"10.1109/JSEN.2024.3473612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dual recognition method has been applied extensively as an attractive strategy, which effectively improved the specificity of detection. Herein, a novel silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor based on a dual-recognition strategy for high-sensitivity detection of dopamine (DA) was presented. The 4-mercaptophenylboronic acid (PMBA) monolayer was self-assembled on the silver film surface in the sensor as the recognition layer. Meanwhile, 4-mercaptobenzoic acid (4-MBA)-modified gold nanoparticles (AuNPs) were adopted as the signal amplification tag to enhance the wavelength shift of the SPR phenomenon excited by the light transmitted in the wall of the HF sensor. Experiments of detection for DA were taken in the concentration range of 0.1 nM–\\n<inline-formula> <tex-math>$10~\\\\mu \\\\text { M}$ </tex-math></inline-formula>\\n to investigate the performance of the biosensor. The influences of concentrations of palladium chloride (PdCl2) in pretreatment and the AuNPs size were investigated to improve the performance of the HF SPR sensor. The experimental results showed that the limit of detection (LOD) for DA achieved as low as 0.1 nM. The presented HF SPR sensor with a dual-recognition structure based on self-assembled recognition monolayer and AuNPs shows a large potential for the detection of small biomolecules in biosensing.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"36923-36929\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10715537/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10715537/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The dual recognition method has been applied extensively as an attractive strategy, which effectively improved the specificity of detection. Herein, a novel silver-coated hollow fiber (HF) surface plasmon resonance (SPR) sensor based on a dual-recognition strategy for high-sensitivity detection of dopamine (DA) was presented. The 4-mercaptophenylboronic acid (PMBA) monolayer was self-assembled on the silver film surface in the sensor as the recognition layer. Meanwhile, 4-mercaptobenzoic acid (4-MBA)-modified gold nanoparticles (AuNPs) were adopted as the signal amplification tag to enhance the wavelength shift of the SPR phenomenon excited by the light transmitted in the wall of the HF sensor. Experiments of detection for DA were taken in the concentration range of 0.1 nM–
$10~\mu \text { M}$
to investigate the performance of the biosensor. The influences of concentrations of palladium chloride (PdCl2) in pretreatment and the AuNPs size were investigated to improve the performance of the HF SPR sensor. The experimental results showed that the limit of detection (LOD) for DA achieved as low as 0.1 nM. The presented HF SPR sensor with a dual-recognition structure based on self-assembled recognition monolayer and AuNPs shows a large potential for the detection of small biomolecules in biosensing.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice