Qi Feng;Hongfei Zhang;Cheng Chen;Hui Wang;Jian Wang
{"title":"用 FPGA 实现 CCD 传感器的实时数字基线恢复","authors":"Qi Feng;Hongfei Zhang;Cheng Chen;Hui Wang;Jian Wang","doi":"10.1109/JSEN.2024.3472891","DOIUrl":null,"url":null,"abstract":"Charge-coupled device (CCD) sensors are the primary imaging sensors in scientific astronomical cameras, known for their exceptional channel uniformity. However, the unavoidable baseline drift during alternating current (ac) coupling leads to inconsistencies among pixels in the row direction, especially during high-speed readouts. Standard corrections are insufficient, posing challenges to astronomical observations. The digital correlated double sampling (DCDS) technology enables digital signal processing (DSP) for CCD readout. A real-time digital baseline restoration method was developed and implemented in a field-programmable gate array (FPGA). This method overcomes traditional limitations and can eliminate baseline drift error effectively. Furthermore, the performance of this method in terms of readout noise, channel gain, and nonlinearity was tested, confirming its potential for compensating for baseline drift error in scientific applications.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"37104-37113"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Digital Baseline Restoration for CCD Sensors With Implementation in FPGA\",\"authors\":\"Qi Feng;Hongfei Zhang;Cheng Chen;Hui Wang;Jian Wang\",\"doi\":\"10.1109/JSEN.2024.3472891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Charge-coupled device (CCD) sensors are the primary imaging sensors in scientific astronomical cameras, known for their exceptional channel uniformity. However, the unavoidable baseline drift during alternating current (ac) coupling leads to inconsistencies among pixels in the row direction, especially during high-speed readouts. Standard corrections are insufficient, posing challenges to astronomical observations. The digital correlated double sampling (DCDS) technology enables digital signal processing (DSP) for CCD readout. A real-time digital baseline restoration method was developed and implemented in a field-programmable gate array (FPGA). This method overcomes traditional limitations and can eliminate baseline drift error effectively. Furthermore, the performance of this method in terms of readout noise, channel gain, and nonlinearity was tested, confirming its potential for compensating for baseline drift error in scientific applications.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"37104-37113\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713067/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10713067/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Real-Time Digital Baseline Restoration for CCD Sensors With Implementation in FPGA
Charge-coupled device (CCD) sensors are the primary imaging sensors in scientific astronomical cameras, known for their exceptional channel uniformity. However, the unavoidable baseline drift during alternating current (ac) coupling leads to inconsistencies among pixels in the row direction, especially during high-speed readouts. Standard corrections are insufficient, posing challenges to astronomical observations. The digital correlated double sampling (DCDS) technology enables digital signal processing (DSP) for CCD readout. A real-time digital baseline restoration method was developed and implemented in a field-programmable gate array (FPGA). This method overcomes traditional limitations and can eliminate baseline drift error effectively. Furthermore, the performance of this method in terms of readout noise, channel gain, and nonlinearity was tested, confirming its potential for compensating for baseline drift error in scientific applications.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice