{"title":"将动态稀疏性引入低功耗音频边缘计算的前沿:大脑启发的网络更新稀疏化方法","authors":"Shih-Chii Liu;Sheng Zhou;Zixiao Li;Chang Gao;Kwantae Kim;Tobi Delbruck","doi":"10.1109/MSSC.2024.3455290","DOIUrl":null,"url":null,"abstract":"Dynamic sparsity is intrinsic to biological computing and is key to its extreme power efficiency. Edge computing systems can improve their energy efficiency and reduce response latency by exploiting this neuromorphic principle. The neuromorphic approach for the extraction of acoustic features replaces conventional ADC and DSP with biological cochlea-inspired filters and event generators implemented in mixed-signal circuits. The resulting sparse feature events drive inference in dynamic-sparsity-aware neural network accelerators to reduce computational load and memory access. The demonstration of edge keyword spotting shows the dynamic savings in power. Exploiting dynamic sparsity at all levels will be the next step toward the design of intelligent devices for the edge.","PeriodicalId":100636,"journal":{"name":"IEEE Solid-State Circuits Magazine","volume":"16 4","pages":"62-69"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bringing Dynamic Sparsity to the Forefront for Low-Power Audio Edge Computing: Brain-inspired approach for sparsifying network updates\",\"authors\":\"Shih-Chii Liu;Sheng Zhou;Zixiao Li;Chang Gao;Kwantae Kim;Tobi Delbruck\",\"doi\":\"10.1109/MSSC.2024.3455290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic sparsity is intrinsic to biological computing and is key to its extreme power efficiency. Edge computing systems can improve their energy efficiency and reduce response latency by exploiting this neuromorphic principle. The neuromorphic approach for the extraction of acoustic features replaces conventional ADC and DSP with biological cochlea-inspired filters and event generators implemented in mixed-signal circuits. The resulting sparse feature events drive inference in dynamic-sparsity-aware neural network accelerators to reduce computational load and memory access. The demonstration of edge keyword spotting shows the dynamic savings in power. Exploiting dynamic sparsity at all levels will be the next step toward the design of intelligent devices for the edge.\",\"PeriodicalId\":100636,\"journal\":{\"name\":\"IEEE Solid-State Circuits Magazine\",\"volume\":\"16 4\",\"pages\":\"62-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752808/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Magazine","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752808/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bringing Dynamic Sparsity to the Forefront for Low-Power Audio Edge Computing: Brain-inspired approach for sparsifying network updates
Dynamic sparsity is intrinsic to biological computing and is key to its extreme power efficiency. Edge computing systems can improve their energy efficiency and reduce response latency by exploiting this neuromorphic principle. The neuromorphic approach for the extraction of acoustic features replaces conventional ADC and DSP with biological cochlea-inspired filters and event generators implemented in mixed-signal circuits. The resulting sparse feature events drive inference in dynamic-sparsity-aware neural network accelerators to reduce computational load and memory access. The demonstration of edge keyword spotting shows the dynamic savings in power. Exploiting dynamic sparsity at all levels will be the next step toward the design of intelligent devices for the edge.