将动态稀疏性引入低功耗音频边缘计算的前沿:大脑启发的网络更新稀疏化方法

Shih-Chii Liu;Sheng Zhou;Zixiao Li;Chang Gao;Kwantae Kim;Tobi Delbruck
{"title":"将动态稀疏性引入低功耗音频边缘计算的前沿:大脑启发的网络更新稀疏化方法","authors":"Shih-Chii Liu;Sheng Zhou;Zixiao Li;Chang Gao;Kwantae Kim;Tobi Delbruck","doi":"10.1109/MSSC.2024.3455290","DOIUrl":null,"url":null,"abstract":"Dynamic sparsity is intrinsic to biological computing and is key to its extreme power efficiency. Edge computing systems can improve their energy efficiency and reduce response latency by exploiting this neuromorphic principle. The neuromorphic approach for the extraction of acoustic features replaces conventional ADC and DSP with biological cochlea-inspired filters and event generators implemented in mixed-signal circuits. The resulting sparse feature events drive inference in dynamic-sparsity-aware neural network accelerators to reduce computational load and memory access. The demonstration of edge keyword spotting shows the dynamic savings in power. Exploiting dynamic sparsity at all levels will be the next step toward the design of intelligent devices for the edge.","PeriodicalId":100636,"journal":{"name":"IEEE Solid-State Circuits Magazine","volume":"16 4","pages":"62-69"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bringing Dynamic Sparsity to the Forefront for Low-Power Audio Edge Computing: Brain-inspired approach for sparsifying network updates\",\"authors\":\"Shih-Chii Liu;Sheng Zhou;Zixiao Li;Chang Gao;Kwantae Kim;Tobi Delbruck\",\"doi\":\"10.1109/MSSC.2024.3455290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic sparsity is intrinsic to biological computing and is key to its extreme power efficiency. Edge computing systems can improve their energy efficiency and reduce response latency by exploiting this neuromorphic principle. The neuromorphic approach for the extraction of acoustic features replaces conventional ADC and DSP with biological cochlea-inspired filters and event generators implemented in mixed-signal circuits. The resulting sparse feature events drive inference in dynamic-sparsity-aware neural network accelerators to reduce computational load and memory access. The demonstration of edge keyword spotting shows the dynamic savings in power. Exploiting dynamic sparsity at all levels will be the next step toward the design of intelligent devices for the edge.\",\"PeriodicalId\":100636,\"journal\":{\"name\":\"IEEE Solid-State Circuits Magazine\",\"volume\":\"16 4\",\"pages\":\"62-69\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752808/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Magazine","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752808/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态稀疏性是生物计算的固有特性,也是其极高能效的关键所在。利用这一神经形态原理,边缘计算系统可以提高能效并减少响应延迟。用于提取声学特征的神经形态方法用混合信号电路中实现的生物耳蜗启发滤波器和事件发生器取代了传统的 ADC 和 DSP。由此产生的稀疏特征事件驱动动态稀疏感知神经网络加速器进行推理,以减少计算负荷和内存访问。边缘关键字定位演示显示了动态功耗节省。利用各级动态稀疏性将是设计边缘智能设备的下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bringing Dynamic Sparsity to the Forefront for Low-Power Audio Edge Computing: Brain-inspired approach for sparsifying network updates
Dynamic sparsity is intrinsic to biological computing and is key to its extreme power efficiency. Edge computing systems can improve their energy efficiency and reduce response latency by exploiting this neuromorphic principle. The neuromorphic approach for the extraction of acoustic features replaces conventional ADC and DSP with biological cochlea-inspired filters and event generators implemented in mixed-signal circuits. The resulting sparse feature events drive inference in dynamic-sparsity-aware neural network accelerators to reduce computational load and memory access. The demonstration of edge keyword spotting shows the dynamic savings in power. Exploiting dynamic sparsity at all levels will be the next step toward the design of intelligent devices for the edge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
期刊最新文献
Noise and Distortion, Part III [Circuit Intuitions] SSCS PICO Chronicles: News From the Open Source Community: Sixteen Teams Launched for 2024 SSCS PICO Open Source Chipathon and Exploring Analog IC Design Automation [Society News] Conference Calendar Masthead Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1