发现图神经网络的表征瓶颈

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-08-20 DOI:10.1109/TKDE.2024.3446584
Fang Wu;Siyuan Li;Stan Z. Li
{"title":"发现图神经网络的表征瓶颈","authors":"Fang Wu;Siyuan Li;Stan Z. Li","doi":"10.1109/TKDE.2024.3446584","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) rely mainly on the message-passing paradigm to propagate node features and build interactions, and different graph learning problems require different ranges of node interactions. In this work, we explore the capacity of GNNs to capture node interactions under contexts of different complexities. We discover that \n<italic>GNNs usually fail to capture the most informative kinds of interaction styles for diverse graph learning tasks</i>\n, and thus name this phenomenon as GNNs’ representation bottleneck. As a response, we demonstrate that the inductive bias introduced by existing graph construction mechanisms can result in this representation bottleneck, i.e., preventing GNNs from learning interactions of the most appropriate complexity. To address that limitation, we propose a novel graph rewiring approach based on interaction patterns learned by GNNs to adjust each node's receptive fields dynamically. Extensive experiments on both real-world and synthetic datasets prove the effectiveness of our algorithm in alleviating the representation bottleneck and its superiority in enhancing the performance of GNNs over state-of-the-art graph rewiring baselines.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7998-8008"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640313","citationCount":"0","resultStr":"{\"title\":\"Discovering the Representation Bottleneck of Graph Neural Networks\",\"authors\":\"Fang Wu;Siyuan Li;Stan Z. Li\",\"doi\":\"10.1109/TKDE.2024.3446584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks (GNNs) rely mainly on the message-passing paradigm to propagate node features and build interactions, and different graph learning problems require different ranges of node interactions. In this work, we explore the capacity of GNNs to capture node interactions under contexts of different complexities. We discover that \\n<italic>GNNs usually fail to capture the most informative kinds of interaction styles for diverse graph learning tasks</i>\\n, and thus name this phenomenon as GNNs’ representation bottleneck. As a response, we demonstrate that the inductive bias introduced by existing graph construction mechanisms can result in this representation bottleneck, i.e., preventing GNNs from learning interactions of the most appropriate complexity. To address that limitation, we propose a novel graph rewiring approach based on interaction patterns learned by GNNs to adjust each node's receptive fields dynamically. Extensive experiments on both real-world and synthetic datasets prove the effectiveness of our algorithm in alleviating the representation bottleneck and its superiority in enhancing the performance of GNNs over state-of-the-art graph rewiring baselines.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"7998-8008\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640313\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10640313/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10640313/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络(GNN)主要依靠消息传递范式来传播节点特征和建立交互,而不同的图学习问题需要不同范围的节点交互。在这项工作中,我们探索了 GNN 在不同复杂度情况下捕捉节点交互的能力。我们发现,对于不同的图学习任务,GNN 通常无法捕捉到信息量最大的几种交互方式,因此将这种现象命名为 GNN 的表示瓶颈。作为回应,我们证明了现有图构建机制引入的归纳偏差会导致这种表征瓶颈,即阻止 GNN 学习最合适复杂度的交互。为了解决这一限制,我们提出了一种基于 GNN 学习到的交互模式的新型图重配方法,以动态调整每个节点的感受野。在真实世界和合成数据集上的广泛实验证明了我们的算法在缓解表示瓶颈方面的有效性,以及在提高 GNN 性能方面优于最先进的图重配基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering the Representation Bottleneck of Graph Neural Networks
Graph neural networks (GNNs) rely mainly on the message-passing paradigm to propagate node features and build interactions, and different graph learning problems require different ranges of node interactions. In this work, we explore the capacity of GNNs to capture node interactions under contexts of different complexities. We discover that GNNs usually fail to capture the most informative kinds of interaction styles for diverse graph learning tasks , and thus name this phenomenon as GNNs’ representation bottleneck. As a response, we demonstrate that the inductive bias introduced by existing graph construction mechanisms can result in this representation bottleneck, i.e., preventing GNNs from learning interactions of the most appropriate complexity. To address that limitation, we propose a novel graph rewiring approach based on interaction patterns learned by GNNs to adjust each node's receptive fields dynamically. Extensive experiments on both real-world and synthetic datasets prove the effectiveness of our algorithm in alleviating the representation bottleneck and its superiority in enhancing the performance of GNNs over state-of-the-art graph rewiring baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and Its Retrieval Online Dynamic Hybrid Broad Learning System for Real-Time Safety Assessment of Dynamic Systems Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance L-ASCRA: A Linearithmic Time Approximate Spectral Clustering Algorithm Using Topologically-Preserved Representatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1