{"title":"发现图神经网络的表征瓶颈","authors":"Fang Wu;Siyuan Li;Stan Z. Li","doi":"10.1109/TKDE.2024.3446584","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) rely mainly on the message-passing paradigm to propagate node features and build interactions, and different graph learning problems require different ranges of node interactions. In this work, we explore the capacity of GNNs to capture node interactions under contexts of different complexities. We discover that \n<italic>GNNs usually fail to capture the most informative kinds of interaction styles for diverse graph learning tasks</i>\n, and thus name this phenomenon as GNNs’ representation bottleneck. As a response, we demonstrate that the inductive bias introduced by existing graph construction mechanisms can result in this representation bottleneck, i.e., preventing GNNs from learning interactions of the most appropriate complexity. To address that limitation, we propose a novel graph rewiring approach based on interaction patterns learned by GNNs to adjust each node's receptive fields dynamically. Extensive experiments on both real-world and synthetic datasets prove the effectiveness of our algorithm in alleviating the representation bottleneck and its superiority in enhancing the performance of GNNs over state-of-the-art graph rewiring baselines.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7998-8008"},"PeriodicalIF":8.9000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640313","citationCount":"0","resultStr":"{\"title\":\"Discovering the Representation Bottleneck of Graph Neural Networks\",\"authors\":\"Fang Wu;Siyuan Li;Stan Z. Li\",\"doi\":\"10.1109/TKDE.2024.3446584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks (GNNs) rely mainly on the message-passing paradigm to propagate node features and build interactions, and different graph learning problems require different ranges of node interactions. In this work, we explore the capacity of GNNs to capture node interactions under contexts of different complexities. We discover that \\n<italic>GNNs usually fail to capture the most informative kinds of interaction styles for diverse graph learning tasks</i>\\n, and thus name this phenomenon as GNNs’ representation bottleneck. As a response, we demonstrate that the inductive bias introduced by existing graph construction mechanisms can result in this representation bottleneck, i.e., preventing GNNs from learning interactions of the most appropriate complexity. To address that limitation, we propose a novel graph rewiring approach based on interaction patterns learned by GNNs to adjust each node's receptive fields dynamically. Extensive experiments on both real-world and synthetic datasets prove the effectiveness of our algorithm in alleviating the representation bottleneck and its superiority in enhancing the performance of GNNs over state-of-the-art graph rewiring baselines.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"36 12\",\"pages\":\"7998-8008\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10640313\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10640313/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10640313/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Discovering the Representation Bottleneck of Graph Neural Networks
Graph neural networks (GNNs) rely mainly on the message-passing paradigm to propagate node features and build interactions, and different graph learning problems require different ranges of node interactions. In this work, we explore the capacity of GNNs to capture node interactions under contexts of different complexities. We discover that
GNNs usually fail to capture the most informative kinds of interaction styles for diverse graph learning tasks
, and thus name this phenomenon as GNNs’ representation bottleneck. As a response, we demonstrate that the inductive bias introduced by existing graph construction mechanisms can result in this representation bottleneck, i.e., preventing GNNs from learning interactions of the most appropriate complexity. To address that limitation, we propose a novel graph rewiring approach based on interaction patterns learned by GNNs to adjust each node's receptive fields dynamically. Extensive experiments on both real-world and synthetic datasets prove the effectiveness of our algorithm in alleviating the representation bottleneck and its superiority in enhancing the performance of GNNs over state-of-the-art graph rewiring baselines.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.