{"title":"识别错位宽面螺旋齿轮对齿面上不均匀载荷分布的有效方法","authors":"Qizhi Wan;Jiajun Chen;Weifang Chen;Rupeng Zhu","doi":"10.1109/JSEN.2024.3472024","DOIUrl":null,"url":null,"abstract":"Wide-faced helical gears are commonly used in ships and industrial applications, where high torque transmission is required. These gears are highly sensitive to shaft misalignment, which can alter the load distribution across a gear pair, leading to increased contact stress and tooth root stress (TRS). In this study, the finite element method is employed to analyze the relationship between load distribution on the tooth face and TRS distribution at various positions under different misalignment errors (MEs). It was ultimately determined that the TRS distribution through the tooth slot center reflects the contact state of the tooth face, and through quantitative analysis, reveals the relationship between ME and the degree of load distribution unevenness, establishing a method to identify the degree of load distribution unevenness on the tooth face by the TRS distribution through the center of the tooth slot. Finally, a new strain gauge arrangement method is proposed and experimentally validated. This method effectively captures the TRS of wide-faced helical gears with misalignment and pitch errors, thereby obtaining a more accurate TRS distribution at the center of the tooth slot.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36569-36578"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Effective Method for Identifying Uneven Load Distribution on the Tooth Faces of Misaligned Wide-Faced Helical Gear Pairs\",\"authors\":\"Qizhi Wan;Jiajun Chen;Weifang Chen;Rupeng Zhu\",\"doi\":\"10.1109/JSEN.2024.3472024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wide-faced helical gears are commonly used in ships and industrial applications, where high torque transmission is required. These gears are highly sensitive to shaft misalignment, which can alter the load distribution across a gear pair, leading to increased contact stress and tooth root stress (TRS). In this study, the finite element method is employed to analyze the relationship between load distribution on the tooth face and TRS distribution at various positions under different misalignment errors (MEs). It was ultimately determined that the TRS distribution through the tooth slot center reflects the contact state of the tooth face, and through quantitative analysis, reveals the relationship between ME and the degree of load distribution unevenness, establishing a method to identify the degree of load distribution unevenness on the tooth face by the TRS distribution through the center of the tooth slot. Finally, a new strain gauge arrangement method is proposed and experimentally validated. This method effectively captures the TRS of wide-faced helical gears with misalignment and pitch errors, thereby obtaining a more accurate TRS distribution at the center of the tooth slot.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"36569-36578\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10709845/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10709845/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Effective Method for Identifying Uneven Load Distribution on the Tooth Faces of Misaligned Wide-Faced Helical Gear Pairs
Wide-faced helical gears are commonly used in ships and industrial applications, where high torque transmission is required. These gears are highly sensitive to shaft misalignment, which can alter the load distribution across a gear pair, leading to increased contact stress and tooth root stress (TRS). In this study, the finite element method is employed to analyze the relationship between load distribution on the tooth face and TRS distribution at various positions under different misalignment errors (MEs). It was ultimately determined that the TRS distribution through the tooth slot center reflects the contact state of the tooth face, and through quantitative analysis, reveals the relationship between ME and the degree of load distribution unevenness, establishing a method to identify the degree of load distribution unevenness on the tooth face by the TRS distribution through the center of the tooth slot. Finally, a new strain gauge arrangement method is proposed and experimentally validated. This method effectively captures the TRS of wide-faced helical gears with misalignment and pitch errors, thereby obtaining a more accurate TRS distribution at the center of the tooth slot.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice