利用机器学习进行响应预测,整合用于二氧化氮传感的剥离 WS2/功能化 MWCNT 纳米复合材料

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-10-04 DOI:10.1109/JSEN.2024.3470069
Sunil Kumar;Naresh Kedam;Evgeny A. Maksimovskiy;Arcady V. Ishchenko;Tatyana V. Larina;Yuriy A. Chesalov;Alexander G. Bannov
{"title":"利用机器学习进行响应预测,整合用于二氧化氮传感的剥离 WS2/功能化 MWCNT 纳米复合材料","authors":"Sunil Kumar;Naresh Kedam;Evgeny A. Maksimovskiy;Arcady V. Ishchenko;Tatyana V. Larina;Yuriy A. Chesalov;Alexander G. Bannov","doi":"10.1109/JSEN.2024.3470069","DOIUrl":null,"url":null,"abstract":"In order to manage the environment and perform noninvasive disease diagnostics, it is necessary to continuously identify harmful and highly toxic gases, such as nitrogen dioxide (NO2). This study demonstrates how to design nanocomposites and build a cost-effective NO2 gas sensor based on exfoliated tungsten disulphide and functionalized multiwalled carbon nanotubes (f-MWCNTs) as a highly efficient sensing material operating at room temperature (RT) in humid conditions. The composite sensor’s response under various humidity levels, ranging from 2% to 65%, as well as at different temperatures (\n<inline-formula> <tex-math>$25~^{\\circ }$ </tex-math></inline-formula>\nC–\n<inline-formula> <tex-math>$80~^{\\circ }$ </tex-math></inline-formula>\nC), was studied. Scanning electron microscopy (SEM), Raman spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX) were used to analyze the sensing material. The composite-based sensor showed an improved response \n<inline-formula> <tex-math>$\\Delta {R}/{R}_{{0}}$ </tex-math></inline-formula>\n of 52% at RT for 50-ppm NO2 with good selectivity to other gases (e.g., ammonia, methane, benzene, isobutene, and hydrogen). The composite sensor exhibited a low detection limit of 1.39 ppm for NO2 at RT. Furthering this advancement, we delve into the integration of machine learning, specifically the CatBoost regression model, with the NO2 sensor. This integration elevates the sensor from a conventional passive detector to an advanced analytical system, significantly boosting its predictive accuracy and adaptability for real-time environmental monitoring and nuanced data interpretation, thereby opening new frontiers in sensor technology and applications in environmental monitoring and health diagnostics.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"36366-36376"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Exfoliated WS2/Functionalized MWCNT Nanocomposites for NO2 Sensing Using Machine Learning for Response Prediction\",\"authors\":\"Sunil Kumar;Naresh Kedam;Evgeny A. Maksimovskiy;Arcady V. Ishchenko;Tatyana V. Larina;Yuriy A. Chesalov;Alexander G. Bannov\",\"doi\":\"10.1109/JSEN.2024.3470069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to manage the environment and perform noninvasive disease diagnostics, it is necessary to continuously identify harmful and highly toxic gases, such as nitrogen dioxide (NO2). This study demonstrates how to design nanocomposites and build a cost-effective NO2 gas sensor based on exfoliated tungsten disulphide and functionalized multiwalled carbon nanotubes (f-MWCNTs) as a highly efficient sensing material operating at room temperature (RT) in humid conditions. The composite sensor’s response under various humidity levels, ranging from 2% to 65%, as well as at different temperatures (\\n<inline-formula> <tex-math>$25~^{\\\\circ }$ </tex-math></inline-formula>\\nC–\\n<inline-formula> <tex-math>$80~^{\\\\circ }$ </tex-math></inline-formula>\\nC), was studied. Scanning electron microscopy (SEM), Raman spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX) were used to analyze the sensing material. The composite-based sensor showed an improved response \\n<inline-formula> <tex-math>$\\\\Delta {R}/{R}_{{0}}$ </tex-math></inline-formula>\\n of 52% at RT for 50-ppm NO2 with good selectivity to other gases (e.g., ammonia, methane, benzene, isobutene, and hydrogen). The composite sensor exhibited a low detection limit of 1.39 ppm for NO2 at RT. Furthering this advancement, we delve into the integration of machine learning, specifically the CatBoost regression model, with the NO2 sensor. This integration elevates the sensor from a conventional passive detector to an advanced analytical system, significantly boosting its predictive accuracy and adaptability for real-time environmental monitoring and nuanced data interpretation, thereby opening new frontiers in sensor technology and applications in environmental monitoring and health diagnostics.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"24 22\",\"pages\":\"36366-36376\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10705938/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10705938/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了管理环境和进行无创疾病诊断,有必要持续识别有害和剧毒气体,如二氧化氮(NO2)。本研究展示了如何设计纳米复合材料,并构建一种基于剥离二硫化钨和功能化多壁碳纳米管(f-MWCNTs)的经济高效的二氧化氮气体传感器,作为一种在室温(RT)和潮湿条件下工作的高效传感材料。研究了复合传感器在不同湿度(2% 到 65%)以及不同温度(25~^{\circ }$ C- 80~^{\circ }$ C)下的响应。扫描电子显微镜(SEM)、拉曼光谱、透射电子显微镜(TEM)和能量色散 X 射线光谱(EDX)被用来分析传感材料。基于复合材料的传感器在 RT 条件下对 50ppm NO2 的响应速度提高了 52%,同时对其他气体(如氨、甲烷、苯、异丁烯和氢)具有良好的选择性。复合传感器在 RT 时对二氧化氮的检测限低至 1.39 ppm。为了推进这一进步,我们深入研究了机器学习与二氧化氮传感器的集成,特别是 CatBoost 回归模型。这种集成将传感器从传统的被动检测器提升为先进的分析系统,大大提高了其预测准确性和适应性,可用于实时环境监测和细微数据解读,从而开辟了传感器技术以及环境监测和健康诊断应用的新领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of Exfoliated WS2/Functionalized MWCNT Nanocomposites for NO2 Sensing Using Machine Learning for Response Prediction
In order to manage the environment and perform noninvasive disease diagnostics, it is necessary to continuously identify harmful and highly toxic gases, such as nitrogen dioxide (NO2). This study demonstrates how to design nanocomposites and build a cost-effective NO2 gas sensor based on exfoliated tungsten disulphide and functionalized multiwalled carbon nanotubes (f-MWCNTs) as a highly efficient sensing material operating at room temperature (RT) in humid conditions. The composite sensor’s response under various humidity levels, ranging from 2% to 65%, as well as at different temperatures ( $25~^{\circ }$ C– $80~^{\circ }$ C), was studied. Scanning electron microscopy (SEM), Raman spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX) were used to analyze the sensing material. The composite-based sensor showed an improved response $\Delta {R}/{R}_{{0}}$ of 52% at RT for 50-ppm NO2 with good selectivity to other gases (e.g., ammonia, methane, benzene, isobutene, and hydrogen). The composite sensor exhibited a low detection limit of 1.39 ppm for NO2 at RT. Furthering this advancement, we delve into the integration of machine learning, specifically the CatBoost regression model, with the NO2 sensor. This integration elevates the sensor from a conventional passive detector to an advanced analytical system, significantly boosting its predictive accuracy and adaptability for real-time environmental monitoring and nuanced data interpretation, thereby opening new frontiers in sensor technology and applications in environmental monitoring and health diagnostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Journal Publication Information Table of Contents Front Cover IEEE Sensors Council A Clustered Routing Algorithm Based on Forwarding Mechanism Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1