V. F. Kosarev, S. V. Klinkov, V. P. Kulevich, V. S. Shikalov, A. E. Korneev, A. A. Korneev, I. I. Bukharin
{"title":"冷喷涂 Al + B4C 复合涂层的耐腐蚀性研究","authors":"V. F. Kosarev, S. V. Klinkov, V. P. Kulevich, V. S. Shikalov, A. E. Korneev, A. A. Korneev, I. I. Bukharin","doi":"10.1007/s11015-024-01810-6","DOIUrl":null,"url":null,"abstract":"<div><p>The work presents the results of the corrosion resistance study of composite coatings obtained by cold spraying of the aluminum and boron carbide powder mixture on the surface of 08Cr18Ni10Ti austenitic steel. Their chemical and phase compositions, macro- and microstructure, as well as the effect of subsequent heat treatment are analyzed. It is shown that the corrosion of coatings in a 2% boric acid solution at 60 °C is accompanied by an increase in the sample mass and the formation of an aluminum oxide layer. The minimum mass change was observed in case of the coating heat treated at 400 °C, while an increase in heat treatment temperature leads to the intensification of corrosion destruction.</p></div>","PeriodicalId":702,"journal":{"name":"Metallurgist","volume":"68 7","pages":"1011 - 1023"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of corrosion resistance of cold sprayed Al + B4C composite coatings\",\"authors\":\"V. F. Kosarev, S. V. Klinkov, V. P. Kulevich, V. S. Shikalov, A. E. Korneev, A. A. Korneev, I. I. Bukharin\",\"doi\":\"10.1007/s11015-024-01810-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The work presents the results of the corrosion resistance study of composite coatings obtained by cold spraying of the aluminum and boron carbide powder mixture on the surface of 08Cr18Ni10Ti austenitic steel. Their chemical and phase compositions, macro- and microstructure, as well as the effect of subsequent heat treatment are analyzed. It is shown that the corrosion of coatings in a 2% boric acid solution at 60 °C is accompanied by an increase in the sample mass and the formation of an aluminum oxide layer. The minimum mass change was observed in case of the coating heat treated at 400 °C, while an increase in heat treatment temperature leads to the intensification of corrosion destruction.</p></div>\",\"PeriodicalId\":702,\"journal\":{\"name\":\"Metallurgist\",\"volume\":\"68 7\",\"pages\":\"1011 - 1023\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgist\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11015-024-01810-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgist","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11015-024-01810-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
本研究介绍了通过在 08Cr18Ni10Ti 奥氏体钢表面冷喷铝和碳化硼粉末混合物而获得的复合涂层的耐腐蚀性研究结果。研究分析了涂层的化学成分和相组成、宏观和微观结构以及后续热处理的影响。结果表明,涂层在 2% 的硼酸溶液(60 °C)中腐蚀时,样品质量会增加,并形成氧化铝层。在 400 °C 下热处理的涂层质量变化最小,而热处理温度的升高会导致腐蚀破坏加剧。
Study of corrosion resistance of cold sprayed Al + B4C composite coatings
The work presents the results of the corrosion resistance study of composite coatings obtained by cold spraying of the aluminum and boron carbide powder mixture on the surface of 08Cr18Ni10Ti austenitic steel. Their chemical and phase compositions, macro- and microstructure, as well as the effect of subsequent heat treatment are analyzed. It is shown that the corrosion of coatings in a 2% boric acid solution at 60 °C is accompanied by an increase in the sample mass and the formation of an aluminum oxide layer. The minimum mass change was observed in case of the coating heat treated at 400 °C, while an increase in heat treatment temperature leads to the intensification of corrosion destruction.
期刊介绍:
Metallurgist is the leading Russian journal in metallurgy. Publication started in 1956.
Basic topics covered include:
State of the art and development of enterprises in ferrous and nonferrous metallurgy and mining;
Metallurgy of ferrous, nonferrous, rare, and precious metals; Metallurgical equipment;
Automation and control;
Protection of labor;
Protection of the environment;
Resources and energy saving;
Quality and certification;
History of metallurgy;
Inventions (patents).