用于储氢的钪取代金刚烷、硅金刚烷、锗金刚烷笼及其衍生物:DFT 分析

IF 2.8 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Silicon Pub Date : 2024-09-26 DOI:10.1007/s12633-024-03157-8
Poonam Parkar, K. B. Nerkar, Ajay Chaudhari
{"title":"用于储氢的钪取代金刚烷、硅金刚烷、锗金刚烷笼及其衍生物:DFT 分析","authors":"Poonam Parkar,&nbsp;K. B. Nerkar,&nbsp;Ajay Chaudhari","doi":"10.1007/s12633-024-03157-8","DOIUrl":null,"url":null,"abstract":"<div><p>Adamantane and its derivatives are designed and analyzed for their hydrogen storage properties after scandium substitution using density functional theory approach. A total of nine structures are considered viz. adamantane (C<sub>10</sub>H<sub>16</sub>) denoted by C<sub>adm</sub>, Si adamantane (Si<sub>10</sub>H<sub>16</sub>-Si<sub>adm</sub>) Ge adamantane (Ge<sub>10</sub>H<sub>16</sub>-Ge<sub>adm</sub>), germanium substituted adamantane (C<sub>4</sub>Ge<sub>6</sub> (CG1) and Ge<sub>4</sub>C<sub>6</sub>(CG2)), silicon substituted adamantane (C<sub>4</sub>Si<sub>6</sub> (CSi1) and Si<sub>4</sub>C<sub>6</sub> (CSi2)), Si and Ge substituted adamantane (Si<sub>4</sub>Ge<sub>6</sub> (SiG1) and Ge<sub>4</sub>Si<sub>6</sub> (SiG2)). To enhance hydrogen uptake capacity, four hydrogen atoms in these structures are replaced with four Sc atoms. The negative Sc substitution energies for all the structures suggest that the substitution of Sc atoms is an endothermic process. The number of H<sub>2</sub> molecules adsorbed on these structures is either 24 or 28 with H<sub>2</sub> uptake capacity in a range of 6.08–13.4 wt% meeting the U.S. Department of Energy's 2025 target of 5.5 wt.%. The inorganic structures exhibit H<sub>2</sub> adsorption characteristics that fall between physisorption and chemisorption whereas the structures containing carbon atoms demonstrate a physisorption nature for H<sub>2</sub> molecules. The hydrogen molecules strongly bind with SiG1(Sc)<sub>4</sub> which is supported by its higher H<sub>2</sub> desorption energy and H<sub>2</sub> desorption temperature. In conclusion, the derivatives of adamantane show better hydrogen storage performance than adamantane.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 17","pages":"6287 - 6303"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scandium Substituted Adamantane, Si Adamantane, Ge Adamantane Cages and Their Derivatives for Hydrogen Storage: A DFT Analysis\",\"authors\":\"Poonam Parkar,&nbsp;K. B. Nerkar,&nbsp;Ajay Chaudhari\",\"doi\":\"10.1007/s12633-024-03157-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adamantane and its derivatives are designed and analyzed for their hydrogen storage properties after scandium substitution using density functional theory approach. A total of nine structures are considered viz. adamantane (C<sub>10</sub>H<sub>16</sub>) denoted by C<sub>adm</sub>, Si adamantane (Si<sub>10</sub>H<sub>16</sub>-Si<sub>adm</sub>) Ge adamantane (Ge<sub>10</sub>H<sub>16</sub>-Ge<sub>adm</sub>), germanium substituted adamantane (C<sub>4</sub>Ge<sub>6</sub> (CG1) and Ge<sub>4</sub>C<sub>6</sub>(CG2)), silicon substituted adamantane (C<sub>4</sub>Si<sub>6</sub> (CSi1) and Si<sub>4</sub>C<sub>6</sub> (CSi2)), Si and Ge substituted adamantane (Si<sub>4</sub>Ge<sub>6</sub> (SiG1) and Ge<sub>4</sub>Si<sub>6</sub> (SiG2)). To enhance hydrogen uptake capacity, four hydrogen atoms in these structures are replaced with four Sc atoms. The negative Sc substitution energies for all the structures suggest that the substitution of Sc atoms is an endothermic process. The number of H<sub>2</sub> molecules adsorbed on these structures is either 24 or 28 with H<sub>2</sub> uptake capacity in a range of 6.08–13.4 wt% meeting the U.S. Department of Energy's 2025 target of 5.5 wt.%. The inorganic structures exhibit H<sub>2</sub> adsorption characteristics that fall between physisorption and chemisorption whereas the structures containing carbon atoms demonstrate a physisorption nature for H<sub>2</sub> molecules. The hydrogen molecules strongly bind with SiG1(Sc)<sub>4</sub> which is supported by its higher H<sub>2</sub> desorption energy and H<sub>2</sub> desorption temperature. In conclusion, the derivatives of adamantane show better hydrogen storage performance than adamantane.</p></div>\",\"PeriodicalId\":776,\"journal\":{\"name\":\"Silicon\",\"volume\":\"16 17\",\"pages\":\"6287 - 6303\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Silicon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12633-024-03157-8\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03157-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论方法设计并分析了金刚烷及其衍生物在钪取代后的储氢特性。共考虑了九种结构,即金刚烷(C10H16),用 Cadm 表示;硅金刚烷(Si10H16-Siadm);锗金刚烷(Ge10H16-Geadm);锗替代金刚烷(C4Ge6 (CG1) 和 Ge4C6(CG2))、硅取代金刚烷(C4Si6 (CSi1) 和 Si4C6 (CSi2))、硅和锗取代金刚烷(Si4Ge6 (SiG1) 和 Ge4Si6 (SiG2))。为了提高吸氢能力,这些结构中的四个氢原子被四个 Sc 原子取代。所有结构的 Sc 置换能均为负值,这表明 Sc 原子的置换是一个内热过程。这些结构吸附的 H2 分子数为 24 或 28,H2 吸收能力在 6.08-13.4 wt% 之间,达到了美国能源部 2025 年 5.5 wt.% 的目标。无机结构对 H2 的吸附特性介于物理吸附和化学吸附之间,而含有碳原子的结构则表现出对 H2 分子的物理吸附特性。SiG1(Sc)4具有较高的H2解吸能和H2解吸温度,这证明氢分子能与SiG1(Sc)4紧密结合。总之,金刚烷的衍生物比金刚烷具有更好的储氢性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scandium Substituted Adamantane, Si Adamantane, Ge Adamantane Cages and Their Derivatives for Hydrogen Storage: A DFT Analysis

Adamantane and its derivatives are designed and analyzed for their hydrogen storage properties after scandium substitution using density functional theory approach. A total of nine structures are considered viz. adamantane (C10H16) denoted by Cadm, Si adamantane (Si10H16-Siadm) Ge adamantane (Ge10H16-Geadm), germanium substituted adamantane (C4Ge6 (CG1) and Ge4C6(CG2)), silicon substituted adamantane (C4Si6 (CSi1) and Si4C6 (CSi2)), Si and Ge substituted adamantane (Si4Ge6 (SiG1) and Ge4Si6 (SiG2)). To enhance hydrogen uptake capacity, four hydrogen atoms in these structures are replaced with four Sc atoms. The negative Sc substitution energies for all the structures suggest that the substitution of Sc atoms is an endothermic process. The number of H2 molecules adsorbed on these structures is either 24 or 28 with H2 uptake capacity in a range of 6.08–13.4 wt% meeting the U.S. Department of Energy's 2025 target of 5.5 wt.%. The inorganic structures exhibit H2 adsorption characteristics that fall between physisorption and chemisorption whereas the structures containing carbon atoms demonstrate a physisorption nature for H2 molecules. The hydrogen molecules strongly bind with SiG1(Sc)4 which is supported by its higher H2 desorption energy and H2 desorption temperature. In conclusion, the derivatives of adamantane show better hydrogen storage performance than adamantane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
期刊最新文献
Physical Properties and Mechanical Behavior of WSi2 at High Pressure Fabrication of SiC-Al2O3 Nanoceramic Doped Organic Polymer For Flexible Nanoelectronics and Optical Applications SiNPs Decoration of Silicon Solar Cells and Size Analysis on the Downshifting Mechanism Response for the Enhancement of Solar Cells Efficiency Nano Silica Catalyzed Synthesis, NMR Spectral and Photophysical Studies of Imidazole Derivatives Recent Progress in Silicon Quantum Dots Sensors: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1