Bijaya Saha, Nabamita Goswami, Ardhendu Saha, Krishna Kanta Kakati
{"title":"基于波浪理论的高灵敏光纤生物传感器在 BG 光束照射下用于登革热感染早期诊断的分析探索","authors":"Bijaya Saha, Nabamita Goswami, Ardhendu Saha, Krishna Kanta Kakati","doi":"10.1007/s00340-024-08351-5","DOIUrl":null,"url":null,"abstract":"<div><p>An analytical study of wave theory-based multilayered SPR-based fiber optic biosensor by shinning Bessel-Gauss (BG) beam is proposed here for early diagnosis of dengue infection. At first, this wave theory-based analytical model shined by Gaussian (G) beam is validated with the already reported experimental data, where the obtained results are in good accord with the experimental findings presented by Y. M. Kamil et al. in 2018. So, it affords the experimental confirmation of the validity of the proposed theory. The enhancement in sensitivity is 1.99 times ascertained by employing G beam for our proposed structure at a spectral sensitivity of 10.008 nm/nM. This theoretical investigation has then been extended utilizing the BG beam, where the observed sensitivity is increased to 59,602.00 dB/RIU and 20.016 nm/nM with a resolution of 1.68 × 10<sup>–7</sup>, which is 3.98 times higher than the referred published work. Here, the limit of detection is 0.06 pM with a minimum change in transmitted output power of 0.8658 milliwatt/RIU. When the DENV-II E protein concentration ranges from 0.08 pM to 0.6 nM, higher spectral shifts are observed. Consequently, enhancements in sensitivity and resolution can be achieved at reduced concentrations, paving the idea of diagnosis of dengue infection at an early stage.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"130 12","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical exploration of wave theory based highly sensitive fiber optic bio-sensor irradiated by BG beam for early diagnosis of dengue infection\",\"authors\":\"Bijaya Saha, Nabamita Goswami, Ardhendu Saha, Krishna Kanta Kakati\",\"doi\":\"10.1007/s00340-024-08351-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An analytical study of wave theory-based multilayered SPR-based fiber optic biosensor by shinning Bessel-Gauss (BG) beam is proposed here for early diagnosis of dengue infection. At first, this wave theory-based analytical model shined by Gaussian (G) beam is validated with the already reported experimental data, where the obtained results are in good accord with the experimental findings presented by Y. M. Kamil et al. in 2018. So, it affords the experimental confirmation of the validity of the proposed theory. The enhancement in sensitivity is 1.99 times ascertained by employing G beam for our proposed structure at a spectral sensitivity of 10.008 nm/nM. This theoretical investigation has then been extended utilizing the BG beam, where the observed sensitivity is increased to 59,602.00 dB/RIU and 20.016 nm/nM with a resolution of 1.68 × 10<sup>–7</sup>, which is 3.98 times higher than the referred published work. Here, the limit of detection is 0.06 pM with a minimum change in transmitted output power of 0.8658 milliwatt/RIU. When the DENV-II E protein concentration ranges from 0.08 pM to 0.6 nM, higher spectral shifts are observed. Consequently, enhancements in sensitivity and resolution can be achieved at reduced concentrations, paving the idea of diagnosis of dengue infection at an early stage.</p></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":\"130 12\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-024-08351-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-024-08351-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Analytical exploration of wave theory based highly sensitive fiber optic bio-sensor irradiated by BG beam for early diagnosis of dengue infection
An analytical study of wave theory-based multilayered SPR-based fiber optic biosensor by shinning Bessel-Gauss (BG) beam is proposed here for early diagnosis of dengue infection. At first, this wave theory-based analytical model shined by Gaussian (G) beam is validated with the already reported experimental data, where the obtained results are in good accord with the experimental findings presented by Y. M. Kamil et al. in 2018. So, it affords the experimental confirmation of the validity of the proposed theory. The enhancement in sensitivity is 1.99 times ascertained by employing G beam for our proposed structure at a spectral sensitivity of 10.008 nm/nM. This theoretical investigation has then been extended utilizing the BG beam, where the observed sensitivity is increased to 59,602.00 dB/RIU and 20.016 nm/nM with a resolution of 1.68 × 10–7, which is 3.98 times higher than the referred published work. Here, the limit of detection is 0.06 pM with a minimum change in transmitted output power of 0.8658 milliwatt/RIU. When the DENV-II E protein concentration ranges from 0.08 pM to 0.6 nM, higher spectral shifts are observed. Consequently, enhancements in sensitivity and resolution can be achieved at reduced concentrations, paving the idea of diagnosis of dengue infection at an early stage.
期刊介绍:
Features publication of experimental and theoretical investigations in applied physics
Offers invited reviews in addition to regular papers
Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more
94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again
Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field.
In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.