Itamar A. Shabtai, Benjamin D. Hafner, Steffen A. Schweizer, Carmen Höschen, Angela Possinger, Johannes Lehmann, Taryn Bauerle
{"title":"根系渗出物同时形成并破坏了土壤中的有机矿物质联系","authors":"Itamar A. Shabtai, Benjamin D. Hafner, Steffen A. Schweizer, Carmen Höschen, Angela Possinger, Johannes Lehmann, Taryn Bauerle","doi":"10.1038/s43247-024-01879-6","DOIUrl":null,"url":null,"abstract":"Organic compounds exuded by plant roots can form organo-mineral associations through physico-chemical interactions with soil minerals but can disrupt existing organo-mineral associations by increasing their microbial decomposition and dissolution. The controls on these opposing processes are poorly understood, as are the chemical and spatial characteristics of these associations which may explain gain or loss of organic matter at the root-soil interface termed the rhizosphere. By pulse-labeling with 13C-carbon dioxide, we found that maize root exudates increased organic matter in the rhizosphere clay size fraction and decreased organic matter in the silt size fraction, and that organic matter loss was mitigated by dry conditions. Organic matter associated with rhizosphere clay particles was linked to microbial metabolism of exudates and was more spatially and chemically heterogeneous than non-rhizosphere clay particles. Our findings show that root exudates can simultaneously form and disrupt organo-mineral associations, mediated by mineral size and composition, and soil moisture. Compounds released by plant roots can stimulate carbon storage in clay fraction of soils and carbon loss in the silt fraction of soils at the same time, according to experiments on maize plants labelled with carbon-13.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01879-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Root exudates simultaneously form and disrupt soil organo-mineral associations\",\"authors\":\"Itamar A. Shabtai, Benjamin D. Hafner, Steffen A. Schweizer, Carmen Höschen, Angela Possinger, Johannes Lehmann, Taryn Bauerle\",\"doi\":\"10.1038/s43247-024-01879-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic compounds exuded by plant roots can form organo-mineral associations through physico-chemical interactions with soil minerals but can disrupt existing organo-mineral associations by increasing their microbial decomposition and dissolution. The controls on these opposing processes are poorly understood, as are the chemical and spatial characteristics of these associations which may explain gain or loss of organic matter at the root-soil interface termed the rhizosphere. By pulse-labeling with 13C-carbon dioxide, we found that maize root exudates increased organic matter in the rhizosphere clay size fraction and decreased organic matter in the silt size fraction, and that organic matter loss was mitigated by dry conditions. Organic matter associated with rhizosphere clay particles was linked to microbial metabolism of exudates and was more spatially and chemically heterogeneous than non-rhizosphere clay particles. Our findings show that root exudates can simultaneously form and disrupt organo-mineral associations, mediated by mineral size and composition, and soil moisture. Compounds released by plant roots can stimulate carbon storage in clay fraction of soils and carbon loss in the silt fraction of soils at the same time, according to experiments on maize plants labelled with carbon-13.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01879-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01879-6\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01879-6","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Root exudates simultaneously form and disrupt soil organo-mineral associations
Organic compounds exuded by plant roots can form organo-mineral associations through physico-chemical interactions with soil minerals but can disrupt existing organo-mineral associations by increasing their microbial decomposition and dissolution. The controls on these opposing processes are poorly understood, as are the chemical and spatial characteristics of these associations which may explain gain or loss of organic matter at the root-soil interface termed the rhizosphere. By pulse-labeling with 13C-carbon dioxide, we found that maize root exudates increased organic matter in the rhizosphere clay size fraction and decreased organic matter in the silt size fraction, and that organic matter loss was mitigated by dry conditions. Organic matter associated with rhizosphere clay particles was linked to microbial metabolism of exudates and was more spatially and chemically heterogeneous than non-rhizosphere clay particles. Our findings show that root exudates can simultaneously form and disrupt organo-mineral associations, mediated by mineral size and composition, and soil moisture. Compounds released by plant roots can stimulate carbon storage in clay fraction of soils and carbon loss in the silt fraction of soils at the same time, according to experiments on maize plants labelled with carbon-13.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.