利用代用模型预测气候变化下不断变化的地貌上的风暴潮

Mohammad Ahmadi Gharehtoragh, David R. Johnson
{"title":"利用代用模型预测气候变化下不断变化的地貌上的风暴潮","authors":"Mohammad Ahmadi Gharehtoragh, David R. Johnson","doi":"10.1038/s44304-024-00032-9","DOIUrl":null,"url":null,"abstract":"Planners managing coastal flood risk under a constrained computational budget face a tradeoff. Simulating many time periods or scenarios limits how many storm simulations can be run on each landscape. In this analysis, we present a deep learning model to predict storm surge as a function of storm parameters but also landscape features and boundary conditions (e.g., sea level). It is trained on peak surge elevations from Advanced Circulation (ADCIRC) hydrodynamic simulations of coastal Louisiana in a 2020 baseline and decadal periods from 2030 to 2070 under two morphological and climate scenarios. Leave-one-landscape-out cross-validation yielded a 0.086-m RMSE and 0.050-m MAE over 90 storms per landscape and 94,013 geospatial locations. A two-sided Kolmogorov-Smirnov test comparing annual exceedance probability (AEP) estimates from the model predictions to ADCIRC simulations rejected the null hypothesis that the predicted and ADCIRC AEP values were drawn from the same distribution only 1.1% of the time.","PeriodicalId":501712,"journal":{"name":"npj Natural Hazards","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44304-024-00032-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Using surrogate modeling to predict storm surge on evolving landscapes under climate change\",\"authors\":\"Mohammad Ahmadi Gharehtoragh, David R. Johnson\",\"doi\":\"10.1038/s44304-024-00032-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Planners managing coastal flood risk under a constrained computational budget face a tradeoff. Simulating many time periods or scenarios limits how many storm simulations can be run on each landscape. In this analysis, we present a deep learning model to predict storm surge as a function of storm parameters but also landscape features and boundary conditions (e.g., sea level). It is trained on peak surge elevations from Advanced Circulation (ADCIRC) hydrodynamic simulations of coastal Louisiana in a 2020 baseline and decadal periods from 2030 to 2070 under two morphological and climate scenarios. Leave-one-landscape-out cross-validation yielded a 0.086-m RMSE and 0.050-m MAE over 90 storms per landscape and 94,013 geospatial locations. A two-sided Kolmogorov-Smirnov test comparing annual exceedance probability (AEP) estimates from the model predictions to ADCIRC simulations rejected the null hypothesis that the predicted and ADCIRC AEP values were drawn from the same distribution only 1.1% of the time.\",\"PeriodicalId\":501712,\"journal\":{\"name\":\"npj Natural Hazards\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44304-024-00032-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Natural Hazards\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44304-024-00032-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Natural Hazards","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44304-024-00032-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算预算有限的情况下,管理沿岸洪水风险的规划人员需要权衡利弊。模拟多个时段或场景会限制在每个地貌上运行多少次风暴模拟。在本分析中,我们提出了一种深度学习模型,用于预测风暴潮,它不仅是风暴参数的函数,也是地貌特征和边界条件(如海平面)的函数。该模型是根据高级环流(ADCIRC)对路易斯安那州沿海 2020 年基线和 2030 年至 2070 年十年期两种形态和气候情景下的水动力模拟得出的浪涌峰值进行训练的。在每个地貌 90 次风暴和 94,013 个地理空间位置上,对一个地貌进行交叉验证,得出的均方根误差为 0.086 米,最大均方根误差为 0.050 米。对模型预测和 ADCIRC 模拟的年超标概率(AEP)估计值进行了双侧 Kolmogorov-Smirnov 检验,仅有 1.1% 的时间拒绝了预测值和 ADCIRC AEP 值来自同一分布的零假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using surrogate modeling to predict storm surge on evolving landscapes under climate change
Planners managing coastal flood risk under a constrained computational budget face a tradeoff. Simulating many time periods or scenarios limits how many storm simulations can be run on each landscape. In this analysis, we present a deep learning model to predict storm surge as a function of storm parameters but also landscape features and boundary conditions (e.g., sea level). It is trained on peak surge elevations from Advanced Circulation (ADCIRC) hydrodynamic simulations of coastal Louisiana in a 2020 baseline and decadal periods from 2030 to 2070 under two morphological and climate scenarios. Leave-one-landscape-out cross-validation yielded a 0.086-m RMSE and 0.050-m MAE over 90 storms per landscape and 94,013 geospatial locations. A two-sided Kolmogorov-Smirnov test comparing annual exceedance probability (AEP) estimates from the model predictions to ADCIRC simulations rejected the null hypothesis that the predicted and ADCIRC AEP values were drawn from the same distribution only 1.1% of the time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Debris flows in the northern Tien Shan, Central Asia: regional database, meteorological triggers, and trends Adaptation portfolio – a multi-measure framework for future floods and droughts Earthquakes yes, disasters no Bayesian estimation of the likelihood of extreme hail sizes over the United States Climate change exacerbates compound flooding from recent tropical cyclones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1