{"title":"纵向数据和生存数据的联合建模","authors":"Jane-Ling Wang, Qixian Zhong","doi":"10.1146/annurev-statistics-112723-034334","DOIUrl":null,"url":null,"abstract":"In medical studies, time-to-event outcomes such as time to death or relapse of a disease are routinely recorded along with longitudinal data that are observed intermittently during the follow-up period. For various reasons, marginal approaches to model the event time, corresponding to separate approaches for survival data/longitudinal data, tend to induce bias and lose efficiency. Instead, a joint modeling approach that brings the two types of data together can reduce or eliminate the bias and yield a more efficient estimation procedure. A well-established avenue for joint modeling is the joint likelihood approach that often produces semiparametric efficient estimators for the finite-dimensional parameter vectors in both models. Through a transformation survival model with an unspecified baseline hazard function, this review introduces joint modeling that accommodates both baseline covariates and time-varying covariates. The focus is on the major challenges faced by joint modeling and how they can be overcome. A review of available software implementations and a brief discussion of future directions of the field are also included.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"246 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Modeling of Longitudinal and Survival Data\",\"authors\":\"Jane-Ling Wang, Qixian Zhong\",\"doi\":\"10.1146/annurev-statistics-112723-034334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In medical studies, time-to-event outcomes such as time to death or relapse of a disease are routinely recorded along with longitudinal data that are observed intermittently during the follow-up period. For various reasons, marginal approaches to model the event time, corresponding to separate approaches for survival data/longitudinal data, tend to induce bias and lose efficiency. Instead, a joint modeling approach that brings the two types of data together can reduce or eliminate the bias and yield a more efficient estimation procedure. A well-established avenue for joint modeling is the joint likelihood approach that often produces semiparametric efficient estimators for the finite-dimensional parameter vectors in both models. Through a transformation survival model with an unspecified baseline hazard function, this review introduces joint modeling that accommodates both baseline covariates and time-varying covariates. The focus is on the major challenges faced by joint modeling and how they can be overcome. A review of available software implementations and a brief discussion of future directions of the field are also included.\",\"PeriodicalId\":48855,\"journal\":{\"name\":\"Annual Review of Statistics and Its Application\",\"volume\":\"246 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Statistics and Its Application\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-statistics-112723-034334\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-112723-034334","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
In medical studies, time-to-event outcomes such as time to death or relapse of a disease are routinely recorded along with longitudinal data that are observed intermittently during the follow-up period. For various reasons, marginal approaches to model the event time, corresponding to separate approaches for survival data/longitudinal data, tend to induce bias and lose efficiency. Instead, a joint modeling approach that brings the two types of data together can reduce or eliminate the bias and yield a more efficient estimation procedure. A well-established avenue for joint modeling is the joint likelihood approach that often produces semiparametric efficient estimators for the finite-dimensional parameter vectors in both models. Through a transformation survival model with an unspecified baseline hazard function, this review introduces joint modeling that accommodates both baseline covariates and time-varying covariates. The focus is on the major challenges faced by joint modeling and how they can be overcome. A review of available software implementations and a brief discussion of future directions of the field are also included.
期刊介绍:
The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.