{"title":"压电声波集成电路","authors":"Krishna C. Balram","doi":"10.1063/5.0222394","DOIUrl":null,"url":null,"abstract":"Piezoelectric microresonators have revolutionized modern wireless communication. While billions of these devices are in widespread use across a range of frequencies, materials, and device geometries, every piezoelectric microresonator in current use shares one common characteristic: they all manipulate (quasi) plane waves. While the ideas around waveguiding and strong confinement of acoustic fields have been around since the early days of ultrasonics research, they have had relatively little impact on modern devices. Building on recent developments in related fields, in particular integrated photonics and quantum computing, we outline the prospects for piezoelectric phononic integrated circuits, which can manipulate gigahertz acoustic waves in micrometer-scale waveguide geometries in low-loss chipscale platforms. We also discuss the main roadblocks, with an emphasis on insertion loss, which need to be addressed for these devices to have the desired impact on future systems.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezoelectric phononic integrated circuits\",\"authors\":\"Krishna C. Balram\",\"doi\":\"10.1063/5.0222394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectric microresonators have revolutionized modern wireless communication. While billions of these devices are in widespread use across a range of frequencies, materials, and device geometries, every piezoelectric microresonator in current use shares one common characteristic: they all manipulate (quasi) plane waves. While the ideas around waveguiding and strong confinement of acoustic fields have been around since the early days of ultrasonics research, they have had relatively little impact on modern devices. Building on recent developments in related fields, in particular integrated photonics and quantum computing, we outline the prospects for piezoelectric phononic integrated circuits, which can manipulate gigahertz acoustic waves in micrometer-scale waveguide geometries in low-loss chipscale platforms. We also discuss the main roadblocks, with an emphasis on insertion loss, which need to be addressed for these devices to have the desired impact on future systems.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0222394\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0222394","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Piezoelectric microresonators have revolutionized modern wireless communication. While billions of these devices are in widespread use across a range of frequencies, materials, and device geometries, every piezoelectric microresonator in current use shares one common characteristic: they all manipulate (quasi) plane waves. While the ideas around waveguiding and strong confinement of acoustic fields have been around since the early days of ultrasonics research, they have had relatively little impact on modern devices. Building on recent developments in related fields, in particular integrated photonics and quantum computing, we outline the prospects for piezoelectric phononic integrated circuits, which can manipulate gigahertz acoustic waves in micrometer-scale waveguide geometries in low-loss chipscale platforms. We also discuss the main roadblocks, with an emphasis on insertion loss, which need to be addressed for these devices to have the desired impact on future systems.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.