通过调节界面化学性质实现卡拉胶诱导的高稳定性锌阳极

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Dalton Transactions Pub Date : 2024-11-15 DOI:10.1039/d4dt02671c
Yan Xu, Zhaohe Guo, Xuena Xu, Liluo Shi, Xueyao Mo, Lu Li, LiMei Sun, Hongri Wan, Ming Song
{"title":"通过调节界面化学性质实现卡拉胶诱导的高稳定性锌阳极","authors":"Yan Xu, Zhaohe Guo, Xuena Xu, Liluo Shi, Xueyao Mo, Lu Li, LiMei Sun, Hongri Wan, Ming Song","doi":"10.1039/d4dt02671c","DOIUrl":null,"url":null,"abstract":"Zinc-ion batteries (ZIBs) are promising on account of the inherent safety, minimal toxicity, cost-effectiveness, and high theoretical capacity. However, the thorny issues including the Zn dendrites and side reactions impede their commercial application. Here, we propose a green, non-toxic and biological carrageenan (Carr) serving as an electrolyte additive to address the aforementioned issues. Owing to the multifunctional groups, Carr has the capacity to interact with Zn2+, thereby modulating the solvation configuration of Zn2+ and changing the ion distribution at electrode-electrolyte interface. Moreover, it can adsorb on the Zn electrode and induce the formation of the solid electrolyte interphase (SEI) consisting of ZnO, ZnS and R-SO2 species. It contributes to the uniform Zn2+ ions diffusion and even Zn deposition with preferable (002) plane. Consequently, the Zn||Zn cells exhibit a stable cycle performance for 800 h at 5 mA cm-2 and 5 mAh cm-2. An elevated coulombic efficiency of 99.2% over 1800 cycles is obtained in the Zn||Cu cells using the electrolyte with Carr. Benefitting from the highly stable and reversible Zn anode, the Zn||VO2 full cell also delivers a high performance in comparison with the bare ZnSO4 electrolyte, favoring the practical implementation of ZIBs.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"38 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carrageenan-induced Highly Stable Zn Anode by Regulating Interface Chemistry\",\"authors\":\"Yan Xu, Zhaohe Guo, Xuena Xu, Liluo Shi, Xueyao Mo, Lu Li, LiMei Sun, Hongri Wan, Ming Song\",\"doi\":\"10.1039/d4dt02671c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc-ion batteries (ZIBs) are promising on account of the inherent safety, minimal toxicity, cost-effectiveness, and high theoretical capacity. However, the thorny issues including the Zn dendrites and side reactions impede their commercial application. Here, we propose a green, non-toxic and biological carrageenan (Carr) serving as an electrolyte additive to address the aforementioned issues. Owing to the multifunctional groups, Carr has the capacity to interact with Zn2+, thereby modulating the solvation configuration of Zn2+ and changing the ion distribution at electrode-electrolyte interface. Moreover, it can adsorb on the Zn electrode and induce the formation of the solid electrolyte interphase (SEI) consisting of ZnO, ZnS and R-SO2 species. It contributes to the uniform Zn2+ ions diffusion and even Zn deposition with preferable (002) plane. Consequently, the Zn||Zn cells exhibit a stable cycle performance for 800 h at 5 mA cm-2 and 5 mAh cm-2. An elevated coulombic efficiency of 99.2% over 1800 cycles is obtained in the Zn||Cu cells using the electrolyte with Carr. Benefitting from the highly stable and reversible Zn anode, the Zn||VO2 full cell also delivers a high performance in comparison with the bare ZnSO4 electrolyte, favoring the practical implementation of ZIBs.\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4dt02671c\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02671c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

锌离子电池(ZIBs)因其固有的安全性、最小毒性、成本效益和高理论容量而大有可为。然而,包括锌枝晶和副反应在内的棘手问题阻碍了其商业应用。在此,我们提出一种绿色、无毒和生物卡拉胶(Carr)作为电解质添加剂,以解决上述问题。由于含有多功能基团,Carr 能够与 Zn2+ 发生相互作用,从而调节 Zn2+ 的溶解构型,改变电解质-电解质界面的离子分布。此外,它还能吸附在 Zn 电极上,诱导形成由 ZnO、ZnS 和 R-SO2 物种组成的固态电解质相(SEI)。它有助于 Zn2+ 离子的均匀扩散和以最佳 (002) 平面均匀沉积 Zn。因此,Zn||Zn 电池在 5 mA cm-2 和 5 mAh cm-2 的条件下可稳定循环 800 小时。使用 Carr 电解液的 Zn||Cu 电池在 1800 次循环中的库仑效率高达 99.2%。得益于高度稳定和可逆的锌阳极,Zn||VO2全电池与裸ZnSO4电解液相比也具有更高的性能,有利于ZIB的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carrageenan-induced Highly Stable Zn Anode by Regulating Interface Chemistry
Zinc-ion batteries (ZIBs) are promising on account of the inherent safety, minimal toxicity, cost-effectiveness, and high theoretical capacity. However, the thorny issues including the Zn dendrites and side reactions impede their commercial application. Here, we propose a green, non-toxic and biological carrageenan (Carr) serving as an electrolyte additive to address the aforementioned issues. Owing to the multifunctional groups, Carr has the capacity to interact with Zn2+, thereby modulating the solvation configuration of Zn2+ and changing the ion distribution at electrode-electrolyte interface. Moreover, it can adsorb on the Zn electrode and induce the formation of the solid electrolyte interphase (SEI) consisting of ZnO, ZnS and R-SO2 species. It contributes to the uniform Zn2+ ions diffusion and even Zn deposition with preferable (002) plane. Consequently, the Zn||Zn cells exhibit a stable cycle performance for 800 h at 5 mA cm-2 and 5 mAh cm-2. An elevated coulombic efficiency of 99.2% over 1800 cycles is obtained in the Zn||Cu cells using the electrolyte with Carr. Benefitting from the highly stable and reversible Zn anode, the Zn||VO2 full cell also delivers a high performance in comparison with the bare ZnSO4 electrolyte, favoring the practical implementation of ZIBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
期刊最新文献
Synthesis, structural characterisation, and anticancer potential of mono and dinuclear Pd(II) complexes of N-(2-pyridyl)thiourea Binding of Base-Stabilized Borylenes with Transition Metals and Formation of Metal Only Lewis Pairs Desulfurization of Isothiocyanates by a Divalent Germanium Amide Control of the Electronic and Optical Properties of Aminoxyl Radicals via Boron Complexation In Situ Growth of Octa-Phenyl Polyhedral Oligomeric Silsesquioxane over Fluorinated Graphene nanosheets: Super-wetting Coatings for Oils and Organics Sorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1