{"title":"利用降雨诱发的地下水温度响应估算侧向流速","authors":"Kewei Chen, Zhili Guo, Maosheng Yin, Xiuyu Liang, Zhenbo Chang, Shuai Yang, Xiaoou Wei, Xuchen Zhai, Chunmiao Zheng","doi":"10.1029/2023wr036715","DOIUrl":null,"url":null,"abstract":"This study introduces a novel heat tracing method for estimating lateral groundwater flow velocity induced and sustained by heavy rainfall events in lowland areas, leveraging the distinct temperature difference between rainfall and groundwater. The method is motivated by the observation that the rainfall-induced groundwater temperature signal dissipates along the flow path. To explain the observed temperature anomaly and then estimate the lateral flow velocity, we develop a semi-analytical model for heat transport in the aquifer, accounting for conduction losses to adjacent layers. Our findings reveal that interactions between the aquifer, vadose zone, and bedrock significantly influence the temperature signal, thereby affecting velocity estimation. Inaccuracies in measured aquifer properties, such as thickness, porosity, and thermal conductivity of surrounding layers, increase the uncertainty of velocity estimates. However, variations in aquifer thermal conductivity have a minimal effect on the method's overall accuracy. When estimating multiple parameters, velocity estimates tend to be less reliable, especially if aquifer porosity remains uncertain. This is due to the challenges of simultaneously inverting both velocity and porosity. Overall, this work underscores the potential of using heat as a tracer for assessing lateral groundwater flow following rainfall, offering a practical, low-cost solution applicable in a wide range of settings.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"29 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Rainfall-Induced Groundwater Temperature Response to Estimate Lateral Flow Velocity\",\"authors\":\"Kewei Chen, Zhili Guo, Maosheng Yin, Xiuyu Liang, Zhenbo Chang, Shuai Yang, Xiaoou Wei, Xuchen Zhai, Chunmiao Zheng\",\"doi\":\"10.1029/2023wr036715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces a novel heat tracing method for estimating lateral groundwater flow velocity induced and sustained by heavy rainfall events in lowland areas, leveraging the distinct temperature difference between rainfall and groundwater. The method is motivated by the observation that the rainfall-induced groundwater temperature signal dissipates along the flow path. To explain the observed temperature anomaly and then estimate the lateral flow velocity, we develop a semi-analytical model for heat transport in the aquifer, accounting for conduction losses to adjacent layers. Our findings reveal that interactions between the aquifer, vadose zone, and bedrock significantly influence the temperature signal, thereby affecting velocity estimation. Inaccuracies in measured aquifer properties, such as thickness, porosity, and thermal conductivity of surrounding layers, increase the uncertainty of velocity estimates. However, variations in aquifer thermal conductivity have a minimal effect on the method's overall accuracy. When estimating multiple parameters, velocity estimates tend to be less reliable, especially if aquifer porosity remains uncertain. This is due to the challenges of simultaneously inverting both velocity and porosity. Overall, this work underscores the potential of using heat as a tracer for assessing lateral groundwater flow following rainfall, offering a practical, low-cost solution applicable in a wide range of settings.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr036715\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr036715","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Using Rainfall-Induced Groundwater Temperature Response to Estimate Lateral Flow Velocity
This study introduces a novel heat tracing method for estimating lateral groundwater flow velocity induced and sustained by heavy rainfall events in lowland areas, leveraging the distinct temperature difference between rainfall and groundwater. The method is motivated by the observation that the rainfall-induced groundwater temperature signal dissipates along the flow path. To explain the observed temperature anomaly and then estimate the lateral flow velocity, we develop a semi-analytical model for heat transport in the aquifer, accounting for conduction losses to adjacent layers. Our findings reveal that interactions between the aquifer, vadose zone, and bedrock significantly influence the temperature signal, thereby affecting velocity estimation. Inaccuracies in measured aquifer properties, such as thickness, porosity, and thermal conductivity of surrounding layers, increase the uncertainty of velocity estimates. However, variations in aquifer thermal conductivity have a minimal effect on the method's overall accuracy. When estimating multiple parameters, velocity estimates tend to be less reliable, especially if aquifer porosity remains uncertain. This is due to the challenges of simultaneously inverting both velocity and porosity. Overall, this work underscores the potential of using heat as a tracer for assessing lateral groundwater flow following rainfall, offering a practical, low-cost solution applicable in a wide range of settings.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.