{"title":"中国南方水稻品种食用和烹饪品质的遗传改良","authors":"Yue Cai, Zichun Chen, Jianju Liu, Ling Yu, Zhiping Wang, Shuhao Zhu, Wei Shi, Cunhong Pan, Yunyu Wu, Yuhong Li, Hongjuan Ji, Niansheng Huang, Xiaoxiang Zhang, Peng Gao, Ning Xiao, Shimin Zuo, Aihong Li","doi":"10.1111/pbi.14517","DOIUrl":null,"url":null,"abstract":"The genetic improvement of rice eating and cooking quality (ECQ) is an important goal in rice breeding. It is important to understand the genetic regulation of ECQ at the genomic level for effective breeding to improve ECQ. However, the mechanisms underlying the improvement of ECQ of <i>indica</i> and <i>japonica</i> cultivars in southern China remain unclear. In this study, 290 rice cultivars (155 <i>indica</i> and 135 <i>japonica</i> cultivars) bred in southern China in the past 30 years were collected. Physicochemical indicators, namely, apparent amylose content (AAC), protein content (PC), lipid content and taste value, were measured and correlation analysis was performed. A decrease in AAC and PC was a crucial factor for the ECQ improvement of the rice cultivars in southern China. Genome-wide association analysis and selective domestication analysis preliminarily clarified that the comprehensive utilization of major and minor genes was an important genetic basis for improvement of ECQ. An elite allele, <i>RAmy1A</i><sup><i>A</i></sup>, with potential application in breeding to improve starch viscosity characteristics and ECQ, was mined. The <i>Wx</i><sup><i>b</i></sup>/<i>OsmtSSB1L</i><sup><i>T</i></sup>/<i>OsDML4</i><sup><i>G</i></sup>/<i>RPBF</i><sup><i>T</i></sup>/<i>Du3</i><sup><i>T</i></sup> and <i>Wx</i><sup><i>b</i></sup>/<i>OsEro1</i><sup><i>T</i></sup><i>/Glup3</i><sup><i>G</i></sup><i>/OsNAC25</i><sup><i>G</i></sup>/<i>OsBEIIb</i><sup><i>C</i></sup>/<i>RAmy1A</i><sup><i>A</i></sup>/<i>FLO12</i><sup><i>A</i></sup> gene modules, neither of which have been widely used, are proposed as the optimal allele combinations for ECQ improvement of <i>indica</i> and <i>japonica</i> cultivars in southern China. The results clarify the genetic regulation of rice ECQ improvement in southern China and provide novel genetic resources and breeding strategies for ECQ improvement in rice.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"1 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic improvement of eating and cooking quality of rice cultivars in southern China\",\"authors\":\"Yue Cai, Zichun Chen, Jianju Liu, Ling Yu, Zhiping Wang, Shuhao Zhu, Wei Shi, Cunhong Pan, Yunyu Wu, Yuhong Li, Hongjuan Ji, Niansheng Huang, Xiaoxiang Zhang, Peng Gao, Ning Xiao, Shimin Zuo, Aihong Li\",\"doi\":\"10.1111/pbi.14517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The genetic improvement of rice eating and cooking quality (ECQ) is an important goal in rice breeding. It is important to understand the genetic regulation of ECQ at the genomic level for effective breeding to improve ECQ. However, the mechanisms underlying the improvement of ECQ of <i>indica</i> and <i>japonica</i> cultivars in southern China remain unclear. In this study, 290 rice cultivars (155 <i>indica</i> and 135 <i>japonica</i> cultivars) bred in southern China in the past 30 years were collected. Physicochemical indicators, namely, apparent amylose content (AAC), protein content (PC), lipid content and taste value, were measured and correlation analysis was performed. A decrease in AAC and PC was a crucial factor for the ECQ improvement of the rice cultivars in southern China. Genome-wide association analysis and selective domestication analysis preliminarily clarified that the comprehensive utilization of major and minor genes was an important genetic basis for improvement of ECQ. An elite allele, <i>RAmy1A</i><sup><i>A</i></sup>, with potential application in breeding to improve starch viscosity characteristics and ECQ, was mined. The <i>Wx</i><sup><i>b</i></sup>/<i>OsmtSSB1L</i><sup><i>T</i></sup>/<i>OsDML4</i><sup><i>G</i></sup>/<i>RPBF</i><sup><i>T</i></sup>/<i>Du3</i><sup><i>T</i></sup> and <i>Wx</i><sup><i>b</i></sup>/<i>OsEro1</i><sup><i>T</i></sup><i>/Glup3</i><sup><i>G</i></sup><i>/OsNAC25</i><sup><i>G</i></sup>/<i>OsBEIIb</i><sup><i>C</i></sup>/<i>RAmy1A</i><sup><i>A</i></sup>/<i>FLO12</i><sup><i>A</i></sup> gene modules, neither of which have been widely used, are proposed as the optimal allele combinations for ECQ improvement of <i>indica</i> and <i>japonica</i> cultivars in southern China. The results clarify the genetic regulation of rice ECQ improvement in southern China and provide novel genetic resources and breeding strategies for ECQ improvement in rice.\",\"PeriodicalId\":221,\"journal\":{\"name\":\"Plant Biotechnology Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/pbi.14517\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14517","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Genetic improvement of eating and cooking quality of rice cultivars in southern China
The genetic improvement of rice eating and cooking quality (ECQ) is an important goal in rice breeding. It is important to understand the genetic regulation of ECQ at the genomic level for effective breeding to improve ECQ. However, the mechanisms underlying the improvement of ECQ of indica and japonica cultivars in southern China remain unclear. In this study, 290 rice cultivars (155 indica and 135 japonica cultivars) bred in southern China in the past 30 years were collected. Physicochemical indicators, namely, apparent amylose content (AAC), protein content (PC), lipid content and taste value, were measured and correlation analysis was performed. A decrease in AAC and PC was a crucial factor for the ECQ improvement of the rice cultivars in southern China. Genome-wide association analysis and selective domestication analysis preliminarily clarified that the comprehensive utilization of major and minor genes was an important genetic basis for improvement of ECQ. An elite allele, RAmy1AA, with potential application in breeding to improve starch viscosity characteristics and ECQ, was mined. The Wxb/OsmtSSB1LT/OsDML4G/RPBFT/Du3T and Wxb/OsEro1T/Glup3G/OsNAC25G/OsBEIIbC/RAmy1AA/FLO12A gene modules, neither of which have been widely used, are proposed as the optimal allele combinations for ECQ improvement of indica and japonica cultivars in southern China. The results clarify the genetic regulation of rice ECQ improvement in southern China and provide novel genetic resources and breeding strategies for ECQ improvement in rice.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.