中国南方水稻品种食用和烹饪品质的遗传改良

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2024-11-15 DOI:10.1111/pbi.14517
Yue Cai, Zichun Chen, Jianju Liu, Ling Yu, Zhiping Wang, Shuhao Zhu, Wei Shi, Cunhong Pan, Yunyu Wu, Yuhong Li, Hongjuan Ji, Niansheng Huang, Xiaoxiang Zhang, Peng Gao, Ning Xiao, Shimin Zuo, Aihong Li
{"title":"中国南方水稻品种食用和烹饪品质的遗传改良","authors":"Yue Cai, Zichun Chen, Jianju Liu, Ling Yu, Zhiping Wang, Shuhao Zhu, Wei Shi, Cunhong Pan, Yunyu Wu, Yuhong Li, Hongjuan Ji, Niansheng Huang, Xiaoxiang Zhang, Peng Gao, Ning Xiao, Shimin Zuo, Aihong Li","doi":"10.1111/pbi.14517","DOIUrl":null,"url":null,"abstract":"The genetic improvement of rice eating and cooking quality (ECQ) is an important goal in rice breeding. It is important to understand the genetic regulation of ECQ at the genomic level for effective breeding to improve ECQ. However, the mechanisms underlying the improvement of ECQ of <i>indica</i> and <i>japonica</i> cultivars in southern China remain unclear. In this study, 290 rice cultivars (155 <i>indica</i> and 135 <i>japonica</i> cultivars) bred in southern China in the past 30 years were collected. Physicochemical indicators, namely, apparent amylose content (AAC), protein content (PC), lipid content and taste value, were measured and correlation analysis was performed. A decrease in AAC and PC was a crucial factor for the ECQ improvement of the rice cultivars in southern China. Genome-wide association analysis and selective domestication analysis preliminarily clarified that the comprehensive utilization of major and minor genes was an important genetic basis for improvement of ECQ. An elite allele, <i>RAmy1A</i><sup><i>A</i></sup>, with potential application in breeding to improve starch viscosity characteristics and ECQ, was mined. The <i>Wx</i><sup><i>b</i></sup>/<i>OsmtSSB1L</i><sup><i>T</i></sup>/<i>OsDML4</i><sup><i>G</i></sup>/<i>RPBF</i><sup><i>T</i></sup>/<i>Du3</i><sup><i>T</i></sup> and <i>Wx</i><sup><i>b</i></sup>/<i>OsEro1</i><sup><i>T</i></sup><i>/Glup3</i><sup><i>G</i></sup><i>/OsNAC25</i><sup><i>G</i></sup>/<i>OsBEIIb</i><sup><i>C</i></sup>/<i>RAmy1A</i><sup><i>A</i></sup>/<i>FLO12</i><sup><i>A</i></sup> gene modules, neither of which have been widely used, are proposed as the optimal allele combinations for ECQ improvement of <i>indica</i> and <i>japonica</i> cultivars in southern China. The results clarify the genetic regulation of rice ECQ improvement in southern China and provide novel genetic resources and breeding strategies for ECQ improvement in rice.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"1 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic improvement of eating and cooking quality of rice cultivars in southern China\",\"authors\":\"Yue Cai, Zichun Chen, Jianju Liu, Ling Yu, Zhiping Wang, Shuhao Zhu, Wei Shi, Cunhong Pan, Yunyu Wu, Yuhong Li, Hongjuan Ji, Niansheng Huang, Xiaoxiang Zhang, Peng Gao, Ning Xiao, Shimin Zuo, Aihong Li\",\"doi\":\"10.1111/pbi.14517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The genetic improvement of rice eating and cooking quality (ECQ) is an important goal in rice breeding. It is important to understand the genetic regulation of ECQ at the genomic level for effective breeding to improve ECQ. However, the mechanisms underlying the improvement of ECQ of <i>indica</i> and <i>japonica</i> cultivars in southern China remain unclear. In this study, 290 rice cultivars (155 <i>indica</i> and 135 <i>japonica</i> cultivars) bred in southern China in the past 30 years were collected. Physicochemical indicators, namely, apparent amylose content (AAC), protein content (PC), lipid content and taste value, were measured and correlation analysis was performed. A decrease in AAC and PC was a crucial factor for the ECQ improvement of the rice cultivars in southern China. Genome-wide association analysis and selective domestication analysis preliminarily clarified that the comprehensive utilization of major and minor genes was an important genetic basis for improvement of ECQ. An elite allele, <i>RAmy1A</i><sup><i>A</i></sup>, with potential application in breeding to improve starch viscosity characteristics and ECQ, was mined. The <i>Wx</i><sup><i>b</i></sup>/<i>OsmtSSB1L</i><sup><i>T</i></sup>/<i>OsDML4</i><sup><i>G</i></sup>/<i>RPBF</i><sup><i>T</i></sup>/<i>Du3</i><sup><i>T</i></sup> and <i>Wx</i><sup><i>b</i></sup>/<i>OsEro1</i><sup><i>T</i></sup><i>/Glup3</i><sup><i>G</i></sup><i>/OsNAC25</i><sup><i>G</i></sup>/<i>OsBEIIb</i><sup><i>C</i></sup>/<i>RAmy1A</i><sup><i>A</i></sup>/<i>FLO12</i><sup><i>A</i></sup> gene modules, neither of which have been widely used, are proposed as the optimal allele combinations for ECQ improvement of <i>indica</i> and <i>japonica</i> cultivars in southern China. The results clarify the genetic regulation of rice ECQ improvement in southern China and provide novel genetic resources and breeding strategies for ECQ improvement in rice.\",\"PeriodicalId\":221,\"journal\":{\"name\":\"Plant Biotechnology Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/pbi.14517\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14517","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

遗传改良水稻食用和烹饪品质(ECQ)是水稻育种的一个重要目标。从基因组水平上了解ECQ的遗传调控对有效育种以提高ECQ具有重要意义。然而,华南地区籼稻和粳稻品种ECQ的改良机制仍不清楚。本研究收集了中国南方近 30 年培育的 290 个水稻品种(155 个籼稻品种和 135 个粳稻品种)。测定了表观直链淀粉含量(AAC)、蛋白质含量(PC)、脂质含量和食味值等理化指标,并进行了相关分析。表观直链淀粉含量(AAC)和蛋白质含量(PC)的降低是中国南方水稻品种ECQ改良的关键因素。全基因组关联分析和选择性驯化分析初步明确了主次基因的综合利用是改良ECQ的重要遗传基础。研究发现了RAmy1AA这一优良等位基因,该基因具有育种潜力,可用于改良淀粉粘度特性和ECQ。提出了Wxb/OsmtSSB1LT/OsDML4G/RPBFT/Du3T和Wxb/OsEro1T/Glup3G/OsNAC25G/OsBEIIbC/RAmy1AA/FLO12A基因模块作为改良华南籼稻和粳稻ECQ的最佳等位基因组合。研究结果阐明了中国南方水稻ECQ改良的遗传调控,为水稻ECQ改良提供了新的遗传资源和育种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genetic improvement of eating and cooking quality of rice cultivars in southern China
The genetic improvement of rice eating and cooking quality (ECQ) is an important goal in rice breeding. It is important to understand the genetic regulation of ECQ at the genomic level for effective breeding to improve ECQ. However, the mechanisms underlying the improvement of ECQ of indica and japonica cultivars in southern China remain unclear. In this study, 290 rice cultivars (155 indica and 135 japonica cultivars) bred in southern China in the past 30 years were collected. Physicochemical indicators, namely, apparent amylose content (AAC), protein content (PC), lipid content and taste value, were measured and correlation analysis was performed. A decrease in AAC and PC was a crucial factor for the ECQ improvement of the rice cultivars in southern China. Genome-wide association analysis and selective domestication analysis preliminarily clarified that the comprehensive utilization of major and minor genes was an important genetic basis for improvement of ECQ. An elite allele, RAmy1AA, with potential application in breeding to improve starch viscosity characteristics and ECQ, was mined. The Wxb/OsmtSSB1LT/OsDML4G/RPBFT/Du3T and Wxb/OsEro1T/Glup3G/OsNAC25G/OsBEIIbC/RAmy1AA/FLO12A gene modules, neither of which have been widely used, are proposed as the optimal allele combinations for ECQ improvement of indica and japonica cultivars in southern China. The results clarify the genetic regulation of rice ECQ improvement in southern China and provide novel genetic resources and breeding strategies for ECQ improvement in rice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Creation of high-resistant starch rice through systematic editing of amylopectin biosynthetic genes in rs4. Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy Pathway elucidation and heterologous reconstitution of the long-chain alkane pentadecane biosynthesis from Pogostemon cablin. Increasing thermostability of the key photorespiratory enzyme glycerate 3-kinase by structure-based recombination Genetic improvement of eating and cooking quality of rice cultivars in southern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1