Li Bai, Haibo Hu, Qingqing Ye, Haoyang Li, Leixia Wang, Jianliang Xu
{"title":"联盟学习中的成员推理攻击与防御:调查","authors":"Li Bai, Haibo Hu, Qingqing Ye, Haoyang Li, Leixia Wang, Jianliang Xu","doi":"10.1145/3704633","DOIUrl":null,"url":null,"abstract":"Federated learning is a decentralized machine learning approach where clients train models locally and share model updates to develop a global model. This enables low-resource devices to collaboratively build a high-quality model without requiring direct access to the raw training data. However, despite only sharing model updates, federated learning still faces several privacy vulnerabilities. One of the key threats is membership inference attacks, which target clients’ privacy by determining whether a specific example is part of the training set. These attacks can compromise sensitive information in real-world applications, such as medical diagnoses within a healthcare system. Although there has been extensive research on membership inference attacks, a comprehensive and up-to-date survey specifically focused on it within federated learning is still absent. To fill this gap, we categorize and summarize membership inference attacks and their corresponding defense strategies based on their characteristics in this setting. We introduce a unique taxonomy of existing attack research and provide a systematic overview of various countermeasures. For these studies, we thoroughly analyze the strengths and weaknesses of different approaches. Finally, we identify and discuss key future research directions for readers interested in advancing the field.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"37 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membership Inference Attacks and Defenses in Federated Learning: A Survey\",\"authors\":\"Li Bai, Haibo Hu, Qingqing Ye, Haoyang Li, Leixia Wang, Jianliang Xu\",\"doi\":\"10.1145/3704633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning is a decentralized machine learning approach where clients train models locally and share model updates to develop a global model. This enables low-resource devices to collaboratively build a high-quality model without requiring direct access to the raw training data. However, despite only sharing model updates, federated learning still faces several privacy vulnerabilities. One of the key threats is membership inference attacks, which target clients’ privacy by determining whether a specific example is part of the training set. These attacks can compromise sensitive information in real-world applications, such as medical diagnoses within a healthcare system. Although there has been extensive research on membership inference attacks, a comprehensive and up-to-date survey specifically focused on it within federated learning is still absent. To fill this gap, we categorize and summarize membership inference attacks and their corresponding defense strategies based on their characteristics in this setting. We introduce a unique taxonomy of existing attack research and provide a systematic overview of various countermeasures. For these studies, we thoroughly analyze the strengths and weaknesses of different approaches. Finally, we identify and discuss key future research directions for readers interested in advancing the field.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3704633\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3704633","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Membership Inference Attacks and Defenses in Federated Learning: A Survey
Federated learning is a decentralized machine learning approach where clients train models locally and share model updates to develop a global model. This enables low-resource devices to collaboratively build a high-quality model without requiring direct access to the raw training data. However, despite only sharing model updates, federated learning still faces several privacy vulnerabilities. One of the key threats is membership inference attacks, which target clients’ privacy by determining whether a specific example is part of the training set. These attacks can compromise sensitive information in real-world applications, such as medical diagnoses within a healthcare system. Although there has been extensive research on membership inference attacks, a comprehensive and up-to-date survey specifically focused on it within federated learning is still absent. To fill this gap, we categorize and summarize membership inference attacks and their corresponding defense strategies based on their characteristics in this setting. We introduce a unique taxonomy of existing attack research and provide a systematic overview of various countermeasures. For these studies, we thoroughly analyze the strengths and weaknesses of different approaches. Finally, we identify and discuss key future research directions for readers interested in advancing the field.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.