生成式对抗网络从病理学、基因组学和放射学潜特征中准确重建泛癌症组织学

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-11-15 DOI:10.1126/sciadv.adq0856
Frederick M. Howard, Hanna M. Hieromnimon, Siddhi Ramesh, James Dolezal, Sara Kochanny, Qianchen Zhang, Brad Feiger, Joseph Peterson, Cheng Fan, Charles M. Perou, Jasmine Vickery, Megan Sullivan, Kimberly Cole, Galina Khramtsova, Alexander T. Pearson
{"title":"生成式对抗网络从病理学、基因组学和放射学潜特征中准确重建泛癌症组织学","authors":"Frederick M. Howard,&nbsp;Hanna M. Hieromnimon,&nbsp;Siddhi Ramesh,&nbsp;James Dolezal,&nbsp;Sara Kochanny,&nbsp;Qianchen Zhang,&nbsp;Brad Feiger,&nbsp;Joseph Peterson,&nbsp;Cheng Fan,&nbsp;Charles M. Perou,&nbsp;Jasmine Vickery,&nbsp;Megan Sullivan,&nbsp;Kimberly Cole,&nbsp;Galina Khramtsova,&nbsp;Alexander T. Pearson","doi":"10.1126/sciadv.adq0856","DOIUrl":null,"url":null,"abstract":"<div >Artificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks ranging from routine classification to identification of molecular features. These approaches distill cancer histologic images into high-level features, which are used in predictions, but understanding the biologic meaning of such features remains challenging. We present and validate a custom generative adversarial network—HistoXGAN—capable of reconstructing representative histology using feature vectors produced by common feature extractors. We evaluate HistoXGAN across 29 cancer subtypes and demonstrate that reconstructed images retain information regarding tumor grade, histologic subtype, and gene expression patterns. We leverage HistoXGAN to illustrate the underlying histologic features for deep learning models for actionable mutations, identify model reliance on histologic batch effect in predictions, and demonstrate accurate reconstruction of tumor histology from radiographic imaging for a “virtual biopsy.”</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq0856","citationCount":"0","resultStr":"{\"title\":\"Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features\",\"authors\":\"Frederick M. Howard,&nbsp;Hanna M. Hieromnimon,&nbsp;Siddhi Ramesh,&nbsp;James Dolezal,&nbsp;Sara Kochanny,&nbsp;Qianchen Zhang,&nbsp;Brad Feiger,&nbsp;Joseph Peterson,&nbsp;Cheng Fan,&nbsp;Charles M. Perou,&nbsp;Jasmine Vickery,&nbsp;Megan Sullivan,&nbsp;Kimberly Cole,&nbsp;Galina Khramtsova,&nbsp;Alexander T. Pearson\",\"doi\":\"10.1126/sciadv.adq0856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Artificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks ranging from routine classification to identification of molecular features. These approaches distill cancer histologic images into high-level features, which are used in predictions, but understanding the biologic meaning of such features remains challenging. We present and validate a custom generative adversarial network—HistoXGAN—capable of reconstructing representative histology using feature vectors produced by common feature extractors. We evaluate HistoXGAN across 29 cancer subtypes and demonstrate that reconstructed images retain information regarding tumor grade, histologic subtype, and gene expression patterns. We leverage HistoXGAN to illustrate the underlying histologic features for deep learning models for actionable mutations, identify model reliance on histologic batch effect in predictions, and demonstrate accurate reconstruction of tumor histology from radiographic imaging for a “virtual biopsy.”</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adq0856\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adq0856\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq0856","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人工智能模型已越来越多地用于肿瘤组织学分析,执行从常规分类到分子特征识别等任务。这些方法将癌症组织学图像提炼为高级特征,用于预测,但要理解这些特征的生物学意义仍具有挑战性。我们介绍并验证了一种自定义生成对抗网络--HistoXGAN,它能够使用普通特征提取器生成的特征向量重建有代表性的组织学。我们在 29 种癌症亚型中对 HistoXGAN 进行了评估,结果表明重建的图像保留了有关肿瘤分级、组织学亚型和基因表达模式的信息。我们利用 HistoXGAN 来说明可操作突变深度学习模型的基本组织学特征,确定模型在预测中对组织学批量效应的依赖,并展示了从放射成像中准确重建肿瘤组织学的 "虚拟活检"。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features
Artificial intelligence models have been increasingly used in the analysis of tumor histology to perform tasks ranging from routine classification to identification of molecular features. These approaches distill cancer histologic images into high-level features, which are used in predictions, but understanding the biologic meaning of such features remains challenging. We present and validate a custom generative adversarial network—HistoXGAN—capable of reconstructing representative histology using feature vectors produced by common feature extractors. We evaluate HistoXGAN across 29 cancer subtypes and demonstrate that reconstructed images retain information regarding tumor grade, histologic subtype, and gene expression patterns. We leverage HistoXGAN to illustrate the underlying histologic features for deep learning models for actionable mutations, identify model reliance on histologic batch effect in predictions, and demonstrate accurate reconstruction of tumor histology from radiographic imaging for a “virtual biopsy.”
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features Mitochondrial pyruvate transport regulates presynaptic metabolism and neurotransmission Dynamical control of nanoscale electron density in atomically thin n-type semiconductors via nano-electric pulse generator Gas-phase preparation of silylacetylene (SiH3CCH) through a counterintuitive ethynyl radical (C2H) insertion Cell response to extracellular matrix viscous energy dissipation outweighs high-rigidity sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1