通过腔内 ZnS 调节 Li2S 沉积并加速转换动力学,实现低温锂硫电池的目标

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-15 DOI:10.1021/acs.nanolett.4c04427
Hao Ding, Zhonghui Chen, Huiyu Li, Huadong Suo, Chaozhong Liu, Huanan Yu, Jingkun Yuan, Zixu Sun, Yanyan Zhu, Bo Song
{"title":"通过腔内 ZnS 调节 Li2S 沉积并加速转换动力学,实现低温锂硫电池的目标","authors":"Hao Ding, Zhonghui Chen, Huiyu Li, Huadong Suo, Chaozhong Liu, Huanan Yu, Jingkun Yuan, Zixu Sun, Yanyan Zhu, Bo Song","doi":"10.1021/acs.nanolett.4c04427","DOIUrl":null,"url":null,"abstract":"The uncontrolled deposition behavior and sluggish conversion kinetics of the discharging product (solid Li<sub>2</sub>S) severely deteriorate the electrochemical performance of lithium–sulfur (Li–S) batteries, especially under high S loading and low-temperature conditions. Herein, a multifunctional S cathode host consisting of ZnS nanoparticles (NPs) confined in hollow porous carbon spheres (ZnS@HPCS) is synthesized via a unique capillary force-driven melting-diffusion strategy. The porous carbon shell of ZnS@HPCS provides a space-confined reservoir for soluble polysulfides and solid Li<sub>2</sub>S, while the intracavity ZnS NPs trap polysulfides, induce Li<sub>2</sub>S inside deposition, and accelerate conversion kinetics. Thus, Li–S batteries with ZnS@HPCS-S cathodes exhibit excellent electrochemical performance at both room and low temperatures (−40 °C) and high reversible capacities under high S loading (5.2 mg cm<sup>–2</sup>). Furthermore, Li<sub>2</sub>S nucleation/deposition, <i>in situ</i> Raman, and theoretical analyses reveal the underlying mechanism. This work offers fundamental insights into regulating Li<sub>2</sub>S deposition and designing S hosts for high-performance Li–S batteries.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"128 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS toward Low-Temperature Lithium–Sulfur Batteries\",\"authors\":\"Hao Ding, Zhonghui Chen, Huiyu Li, Huadong Suo, Chaozhong Liu, Huanan Yu, Jingkun Yuan, Zixu Sun, Yanyan Zhu, Bo Song\",\"doi\":\"10.1021/acs.nanolett.4c04427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uncontrolled deposition behavior and sluggish conversion kinetics of the discharging product (solid Li<sub>2</sub>S) severely deteriorate the electrochemical performance of lithium–sulfur (Li–S) batteries, especially under high S loading and low-temperature conditions. Herein, a multifunctional S cathode host consisting of ZnS nanoparticles (NPs) confined in hollow porous carbon spheres (ZnS@HPCS) is synthesized via a unique capillary force-driven melting-diffusion strategy. The porous carbon shell of ZnS@HPCS provides a space-confined reservoir for soluble polysulfides and solid Li<sub>2</sub>S, while the intracavity ZnS NPs trap polysulfides, induce Li<sub>2</sub>S inside deposition, and accelerate conversion kinetics. Thus, Li–S batteries with ZnS@HPCS-S cathodes exhibit excellent electrochemical performance at both room and low temperatures (−40 °C) and high reversible capacities under high S loading (5.2 mg cm<sup>–2</sup>). Furthermore, Li<sub>2</sub>S nucleation/deposition, <i>in situ</i> Raman, and theoretical analyses reveal the underlying mechanism. This work offers fundamental insights into regulating Li<sub>2</sub>S deposition and designing S hosts for high-performance Li–S batteries.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04427\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04427","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

放电产物(固态 Li2S)不受控制的沉积行为和缓慢的转化动力学严重恶化了锂硫(Li-S)电池的电化学性能,尤其是在高 S 负载和低温条件下。本文通过一种独特的毛细管力驱动的熔融扩散策略,合成了一种多功能硫阴极宿主,该宿主由封闭在空心多孔碳球(ZnS@HPCS)中的 ZnS 纳米颗粒(NPs)组成。ZnS@HPCS 的多孔碳壳为可溶性多硫化物和固态 Li2S 提供了一个空间封闭的储层,而腔内 ZnS NPs 则捕获多硫化物,诱导 Li2S 在内部沉积,并加速转换动力学。因此,采用 ZnS@HPCS-S 阴极的锂-S 电池在室温和低温(-40 °C)条件下均表现出优异的电化学性能,并且在高 S 负载(5.2 mg cm-2)条件下具有高可逆容量。此外,Li2S 成核/沉积、原位拉曼和理论分析揭示了其基本机制。这项研究为调节 Li2S 沉积和设计高性能锂-S 电池的 S 宿主提供了基本见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS toward Low-Temperature Lithium–Sulfur Batteries
The uncontrolled deposition behavior and sluggish conversion kinetics of the discharging product (solid Li2S) severely deteriorate the electrochemical performance of lithium–sulfur (Li–S) batteries, especially under high S loading and low-temperature conditions. Herein, a multifunctional S cathode host consisting of ZnS nanoparticles (NPs) confined in hollow porous carbon spheres (ZnS@HPCS) is synthesized via a unique capillary force-driven melting-diffusion strategy. The porous carbon shell of ZnS@HPCS provides a space-confined reservoir for soluble polysulfides and solid Li2S, while the intracavity ZnS NPs trap polysulfides, induce Li2S inside deposition, and accelerate conversion kinetics. Thus, Li–S batteries with ZnS@HPCS-S cathodes exhibit excellent electrochemical performance at both room and low temperatures (−40 °C) and high reversible capacities under high S loading (5.2 mg cm–2). Furthermore, Li2S nucleation/deposition, in situ Raman, and theoretical analyses reveal the underlying mechanism. This work offers fundamental insights into regulating Li2S deposition and designing S hosts for high-performance Li–S batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Insight into Preventing Global Dengue Spread: Nanoengineered Niclosamide for Viral Infections. Reactive Oxygen Species Responsive Supramolecular Prodrug Eyedrops for the Treatment of Choroidal Neovascularization. Novel Bulk Quantum Hall Effect in Nanostructured TaP Macroscopic Crystals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1