基于溴二苯并噻吩的固体添加剂使二元全聚合物太阳能电池的效率达到 19.30

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2024-11-15 DOI:10.1039/d4ee02978j
Yanming Sun, Haisheng Ma, Jiali Song, Jia-Wei Qiao, Bingyu Han, Qianqian Wang, Min Hun Jee, Laju Bu, Donghui Wei, Han Young Woo, Xiao-Tao Hao
{"title":"基于溴二苯并噻吩的固体添加剂使二元全聚合物太阳能电池的效率达到 19.30","authors":"Yanming Sun, Haisheng Ma, Jiali Song, Jia-Wei Qiao, Bingyu Han, Qianqian Wang, Min Hun Jee, Laju Bu, Donghui Wei, Han Young Woo, Xiao-Tao Hao","doi":"10.1039/d4ee02978j","DOIUrl":null,"url":null,"abstract":"All-polymer solar cells (all-PSCs) are thought to be the most promising candidate for the practical application of organic solar cells (OSCs). However, the efficiencies of all-PSCs remains lower than those of small molecule acceptor (SMA)-based OSCs due to their unfavorable active-layer morphology. The complicated molecular interaction and aggregation behavior involved in all-polymer blends make it highly challenging to achieve optimal morphology. Herein, two volatile solid additives named dibenzothiophene (DBTP) and 4-bromodibenzothiophene (4-BDBTP) were developed to finely modulate the morphology of all-PSCs. We clarify that the subtle bromine substitution enables 4-BDBTP to form enhanced intermolecular interactions with the host material, which is beneficial to controlling the molecular aggregation and crystallization, thus facilitating the formation of more ordered molecular stacking and well-defined fibril networks in the all-polymer blend. As a result, the 4-BDBTP-treated-PM6:PY-DT all-PSC achieved a high efficiency of 19.30% (certified as 18.82%). Moreover, two other all-polymer systems validate the broad applicability of 4-BDBTP, and these devices all showed enhanced efficiencies. Our work demonstrates the promising role of solid additive on regulating molecular aggregation and packing in all-polymer blends, offering valuable insight into fabricating high-performance all-PSCs.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"10 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binary all-polymer solar cells with 19.30% efficiency enabled by bromodibenzothiophene-based solid additive\",\"authors\":\"Yanming Sun, Haisheng Ma, Jiali Song, Jia-Wei Qiao, Bingyu Han, Qianqian Wang, Min Hun Jee, Laju Bu, Donghui Wei, Han Young Woo, Xiao-Tao Hao\",\"doi\":\"10.1039/d4ee02978j\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All-polymer solar cells (all-PSCs) are thought to be the most promising candidate for the practical application of organic solar cells (OSCs). However, the efficiencies of all-PSCs remains lower than those of small molecule acceptor (SMA)-based OSCs due to their unfavorable active-layer morphology. The complicated molecular interaction and aggregation behavior involved in all-polymer blends make it highly challenging to achieve optimal morphology. Herein, two volatile solid additives named dibenzothiophene (DBTP) and 4-bromodibenzothiophene (4-BDBTP) were developed to finely modulate the morphology of all-PSCs. We clarify that the subtle bromine substitution enables 4-BDBTP to form enhanced intermolecular interactions with the host material, which is beneficial to controlling the molecular aggregation and crystallization, thus facilitating the formation of more ordered molecular stacking and well-defined fibril networks in the all-polymer blend. As a result, the 4-BDBTP-treated-PM6:PY-DT all-PSC achieved a high efficiency of 19.30% (certified as 18.82%). Moreover, two other all-polymer systems validate the broad applicability of 4-BDBTP, and these devices all showed enhanced efficiencies. Our work demonstrates the promising role of solid additive on regulating molecular aggregation and packing in all-polymer blends, offering valuable insight into fabricating high-performance all-PSCs.\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4ee02978j\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee02978j","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

全聚合物太阳能电池(all-PSCs)被认为是有机太阳能电池(OSCs)实际应用中最有希望的候选材料。然而,由于活性层形态不佳,全聚合物太阳能电池的效率仍然低于基于小分子受体(SMA)的有机太阳能电池。全聚合物共混物中涉及复杂的分子相互作用和聚集行为,这使得实现最佳形态极具挑战性。在此,我们开发了两种名为二苯并噻吩(DBTP)和 4-溴二苯并噻吩(4-BDBTP)的挥发性固体添加剂,用于精细调节全聚苯乙烯晶体管的形态。我们阐明了微妙的溴取代使 4-BDBTP 与宿主材料形成更强的分子间相互作用,这有利于控制分子聚集和结晶,从而促进在全聚合物共混物中形成更有序的分子堆积和清晰的纤维网络。因此,经 4-BDBTP 处理的-PM6:PY-DT 全聚合物聚苯乙烯的效率高达 19.30%(经认证为 18.82%)。此外,另外两个全聚合物系统也验证了 4-BDBTP 的广泛适用性,这些器件都显示出更高的效率。我们的工作证明了固体添加剂在调节全聚合物共混物分子聚集和堆积方面的良好作用,为制造高性能全聚苯乙烯电池提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Binary all-polymer solar cells with 19.30% efficiency enabled by bromodibenzothiophene-based solid additive
All-polymer solar cells (all-PSCs) are thought to be the most promising candidate for the practical application of organic solar cells (OSCs). However, the efficiencies of all-PSCs remains lower than those of small molecule acceptor (SMA)-based OSCs due to their unfavorable active-layer morphology. The complicated molecular interaction and aggregation behavior involved in all-polymer blends make it highly challenging to achieve optimal morphology. Herein, two volatile solid additives named dibenzothiophene (DBTP) and 4-bromodibenzothiophene (4-BDBTP) were developed to finely modulate the morphology of all-PSCs. We clarify that the subtle bromine substitution enables 4-BDBTP to form enhanced intermolecular interactions with the host material, which is beneficial to controlling the molecular aggregation and crystallization, thus facilitating the formation of more ordered molecular stacking and well-defined fibril networks in the all-polymer blend. As a result, the 4-BDBTP-treated-PM6:PY-DT all-PSC achieved a high efficiency of 19.30% (certified as 18.82%). Moreover, two other all-polymer systems validate the broad applicability of 4-BDBTP, and these devices all showed enhanced efficiencies. Our work demonstrates the promising role of solid additive on regulating molecular aggregation and packing in all-polymer blends, offering valuable insight into fabricating high-performance all-PSCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Simultaneously improving the efficiencies of organic photovoltaic devices and modules by finely manipulating the aggregation behaviors of Y-series molecules Regulating interfacial reaction through electrolyte chemistry enables anion-rich interphase for wide-temperature zinc metal batteries Light Radiation Annealing Enables Unidirectional Crystallization of Vacuum-Assisted Sn-Pb Perovskite for Efficient Tandem Solar Cells Suppressed Non-Radiative Loss and Efficient Hole Transfer at Small Highest Occupied Molecular Orbital Offset Enables 19.73% Efficiency Binary Organic Solar Cells with Small Efficiency-Cost Gap Improving upon rechargeable battery technologies: On the role of high-entropy effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1