Christina Vantaraki, Petter Ström, Tuan T. Tran, Matías P. Grassi, Giovanni Fevola, Michael Foerster, Jerzy T. Sadowski, Daniel Primetzhofer, Vassilios Kapaklis
{"title":"离子注入法磁超材料","authors":"Christina Vantaraki, Petter Ström, Tuan T. Tran, Matías P. Grassi, Giovanni Fevola, Michael Foerster, Jerzy T. Sadowski, Daniel Primetzhofer, Vassilios Kapaklis","doi":"10.1063/5.0239106","DOIUrl":null,"url":null,"abstract":"We present a method for the additive fabrication of planar magnetic nanoarrays with minimal surface roughness. Synthesis is accomplished by combining electron-beam lithography, used to generate nanometric patterned masks, with ion implantation in thin films. By implanting 56Fe+ ions, we are able to introduce magnetic functionality in a controlled manner into continuous Pd thin films, achieving 3D spatial resolution down to a few tens of nanometers. Our results demonstrate the application of this technique in fabricating square artificial spin ice lattices, which exhibit well-defined magnetization textures and interactions among the patterned magnetic elements.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic metamaterials by ion-implantation\",\"authors\":\"Christina Vantaraki, Petter Ström, Tuan T. Tran, Matías P. Grassi, Giovanni Fevola, Michael Foerster, Jerzy T. Sadowski, Daniel Primetzhofer, Vassilios Kapaklis\",\"doi\":\"10.1063/5.0239106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for the additive fabrication of planar magnetic nanoarrays with minimal surface roughness. Synthesis is accomplished by combining electron-beam lithography, used to generate nanometric patterned masks, with ion implantation in thin films. By implanting 56Fe+ ions, we are able to introduce magnetic functionality in a controlled manner into continuous Pd thin films, achieving 3D spatial resolution down to a few tens of nanometers. Our results demonstrate the application of this technique in fabricating square artificial spin ice lattices, which exhibit well-defined magnetization textures and interactions among the patterned magnetic elements.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0239106\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0239106","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
We present a method for the additive fabrication of planar magnetic nanoarrays with minimal surface roughness. Synthesis is accomplished by combining electron-beam lithography, used to generate nanometric patterned masks, with ion implantation in thin films. By implanting 56Fe+ ions, we are able to introduce magnetic functionality in a controlled manner into continuous Pd thin films, achieving 3D spatial resolution down to a few tens of nanometers. Our results demonstrate the application of this technique in fabricating square artificial spin ice lattices, which exhibit well-defined magnetization textures and interactions among the patterned magnetic elements.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.