{"title":"利用机器学习的纳米粒子全局优化分而治之法","authors":"Nicholas B Smith, Anna L Garden","doi":"10.1021/acs.jcim.4c01516","DOIUrl":null,"url":null,"abstract":"<p><p>Global optimization of the structure of atomic nanoparticles is often hampered by the presence of many funnels on the potential energy surface. While broad funnels are readily encountered and easily exploited by the search, narrow funnels are more difficult to locate and explore, presenting a problem if the global minimum is situated in such a funnel. Here, a divide-and-conquer approach is applied to overcome the issue posed by the multifunnel effect using a machine learning approach, without using <i>a priori</i> knowledge of the potential energy surface. This approach begins with a truncated exploration to gather coarse-grained knowledge of the potential energy surface. This is then used to train a machine learning Gaussian mixture model to divide up the potential energy surface into separate regions, with each region then being explored in more detail (or conquered) separately. This scheme was tested on a variety of multifunnel systems and yielded significant improvements to the times taken to locate the global minima of Lennard-Jones (LJ) nanoparticles, LJ<sub>75</sub> and LJ<sub>104</sub>, as well as two metallic systems, Au<sub>55</sub> and Pd<sub>88</sub>. However, difficulties were encountered for LJ<sub>98</sub>, providing insight into how the scheme could be further improved.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Divide-and-Conquer Approach to Nanoparticle Global Optimisation Using Machine Learning.\",\"authors\":\"Nicholas B Smith, Anna L Garden\",\"doi\":\"10.1021/acs.jcim.4c01516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global optimization of the structure of atomic nanoparticles is often hampered by the presence of many funnels on the potential energy surface. While broad funnels are readily encountered and easily exploited by the search, narrow funnels are more difficult to locate and explore, presenting a problem if the global minimum is situated in such a funnel. Here, a divide-and-conquer approach is applied to overcome the issue posed by the multifunnel effect using a machine learning approach, without using <i>a priori</i> knowledge of the potential energy surface. This approach begins with a truncated exploration to gather coarse-grained knowledge of the potential energy surface. This is then used to train a machine learning Gaussian mixture model to divide up the potential energy surface into separate regions, with each region then being explored in more detail (or conquered) separately. This scheme was tested on a variety of multifunnel systems and yielded significant improvements to the times taken to locate the global minima of Lennard-Jones (LJ) nanoparticles, LJ<sub>75</sub> and LJ<sub>104</sub>, as well as two metallic systems, Au<sub>55</sub> and Pd<sub>88</sub>. However, difficulties were encountered for LJ<sub>98</sub>, providing insight into how the scheme could be further improved.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01516\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01516","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
A Divide-and-Conquer Approach to Nanoparticle Global Optimisation Using Machine Learning.
Global optimization of the structure of atomic nanoparticles is often hampered by the presence of many funnels on the potential energy surface. While broad funnels are readily encountered and easily exploited by the search, narrow funnels are more difficult to locate and explore, presenting a problem if the global minimum is situated in such a funnel. Here, a divide-and-conquer approach is applied to overcome the issue posed by the multifunnel effect using a machine learning approach, without using a priori knowledge of the potential energy surface. This approach begins with a truncated exploration to gather coarse-grained knowledge of the potential energy surface. This is then used to train a machine learning Gaussian mixture model to divide up the potential energy surface into separate regions, with each region then being explored in more detail (or conquered) separately. This scheme was tested on a variety of multifunnel systems and yielded significant improvements to the times taken to locate the global minima of Lennard-Jones (LJ) nanoparticles, LJ75 and LJ104, as well as two metallic systems, Au55 and Pd88. However, difficulties were encountered for LJ98, providing insight into how the scheme could be further improved.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.