高通量筛选芬太尼类似物。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2025-02-01 Epub Date: 2024-11-12 DOI:10.1016/j.talanta.2024.127191
Samuel A Miller, Andrew R Forero, Lilian Valadares Tose, Jordan E Krechmer, Felician Muntean, Francisco Fernandez-Lima
{"title":"高通量筛选芬太尼类似物。","authors":"Samuel A Miller, Andrew R Forero, Lilian Valadares Tose, Jordan E Krechmer, Felician Muntean, Francisco Fernandez-Lima","doi":"10.1016/j.talanta.2024.127191","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an analytical approach coupling novel ambient ionization sources with trapped ion mobility spectrometry (TIMS) and tandem mass spectrometry (MS/MS) for the rapid characterization of fentanyl analogs. Two ambient ionization sources were illustrated for minimal sample preparation and rapid analysis: electrospray ionization (nESI) and direct analysis in real time (DART). Fentanyl analogs can be separated using nESI-TIMS-MS/MS based on differences in their mobility and/or fragmentation pattern; reference mobility spectra are reported for 234 single standards. In contrast, DART-TIMS-MS/MS allowed for the characterization of 201 compounds due to differences in the protonation pattern and efficiency when compared to nESI. The TIMS high resolving power (R > 80) allowed baseline separation for most isomers and mobility trends were established for methylated and fluorinated isomers, with the more compact ortho-substituted analogs showing distinct separation from para- and meta-substituted species. This multi-dimensional strategy offers a comprehensive characterization of fentanyl analogs and other synthetic opioids with minimal sample preparation. This analysis shows significant potential for high-throughput screening (<5 min) and high sensitivity detection (<pg level) of emerging illicit drugs, supporting ongoing forensic investigations and public health initiatives. The use of alternative mobility calibration methods using internal/external standards with ambient ionization sources coupled to TIMS-MS is also provided, enhancing its robustness and applicability.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127191"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput screening of fentanyl analogs.\",\"authors\":\"Samuel A Miller, Andrew R Forero, Lilian Valadares Tose, Jordan E Krechmer, Felician Muntean, Francisco Fernandez-Lima\",\"doi\":\"10.1016/j.talanta.2024.127191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents an analytical approach coupling novel ambient ionization sources with trapped ion mobility spectrometry (TIMS) and tandem mass spectrometry (MS/MS) for the rapid characterization of fentanyl analogs. Two ambient ionization sources were illustrated for minimal sample preparation and rapid analysis: electrospray ionization (nESI) and direct analysis in real time (DART). Fentanyl analogs can be separated using nESI-TIMS-MS/MS based on differences in their mobility and/or fragmentation pattern; reference mobility spectra are reported for 234 single standards. In contrast, DART-TIMS-MS/MS allowed for the characterization of 201 compounds due to differences in the protonation pattern and efficiency when compared to nESI. The TIMS high resolving power (R > 80) allowed baseline separation for most isomers and mobility trends were established for methylated and fluorinated isomers, with the more compact ortho-substituted analogs showing distinct separation from para- and meta-substituted species. This multi-dimensional strategy offers a comprehensive characterization of fentanyl analogs and other synthetic opioids with minimal sample preparation. This analysis shows significant potential for high-throughput screening (<5 min) and high sensitivity detection (<pg level) of emerging illicit drugs, supporting ongoing forensic investigations and public health initiatives. The use of alternative mobility calibration methods using internal/external standards with ambient ionization sources coupled to TIMS-MS is also provided, enhancing its robustness and applicability.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"283 \",\"pages\":\"127191\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127191\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127191","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种将新型环境电离源与捕获离子迁移谱(TIMS)和串联质谱(MS/MS)相结合的分析方法,用于快速鉴定芬太尼类似物。两种环境电离源:电喷雾电离(nESI)和实时直接分析(DART)可实现最少的样品制备和快速分析。使用 nESI-TIMS-MS/MS 可以根据芬太尼类似物迁移率和/或碎片模式的差异对其进行分离;报告了 234 种单一标准品的参考迁移率光谱。相比之下,DART-TIMS-MS/MS 与 nESI 相比,由于质子化模式和效率的差异,可对 201 种化合物进行表征。TIMS 的高分辨率(R > 80)允许对大多数异构体进行基线分离,并为甲基化和氟化异构体确定了迁移率趋势,更紧凑的正取代类似物与对位和偏取代物种显示出明显的分离。这种多维策略只需最少的样品制备就能对芬太尼类似物和其他合成阿片类药物进行全面表征。这种分析显示了高通量筛选的巨大潜力 (
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-throughput screening of fentanyl analogs.

This study presents an analytical approach coupling novel ambient ionization sources with trapped ion mobility spectrometry (TIMS) and tandem mass spectrometry (MS/MS) for the rapid characterization of fentanyl analogs. Two ambient ionization sources were illustrated for minimal sample preparation and rapid analysis: electrospray ionization (nESI) and direct analysis in real time (DART). Fentanyl analogs can be separated using nESI-TIMS-MS/MS based on differences in their mobility and/or fragmentation pattern; reference mobility spectra are reported for 234 single standards. In contrast, DART-TIMS-MS/MS allowed for the characterization of 201 compounds due to differences in the protonation pattern and efficiency when compared to nESI. The TIMS high resolving power (R > 80) allowed baseline separation for most isomers and mobility trends were established for methylated and fluorinated isomers, with the more compact ortho-substituted analogs showing distinct separation from para- and meta-substituted species. This multi-dimensional strategy offers a comprehensive characterization of fentanyl analogs and other synthetic opioids with minimal sample preparation. This analysis shows significant potential for high-throughput screening (<5 min) and high sensitivity detection (

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Retraction Notice to "Fabrication of a novel sensor based on Cu quantum dot and SH-SiO2 nanoparticles supported on copper-based metal organic framework (Cu QD-SH-SiO2@Cu-MOF) and its application for the simultaneous determination of norepinephrine, piroxicam and epinephrine" [Talanta 252 (2023) 123776]. An innovative fluorescent probe for monitoring of ONOO- in multiple liver-injury models. Aptamer-functionalized magnetic blade spray coupled with a nucleic acid dye-based mass tag strategy for miniature mass spectrometry analysis of endoglin. Design and synthesis of esterase-activated fluorescent probe for diagnosis and surgical guidance of liver cancer. Exploring the role of graphene-metal hybrid nanomaterials as Raman signal enhancers in early stage cancer detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1