利用镧系元素功能化胶原蛋白靶向肽,战略性地增强胶原蛋白检测。

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2025-02-01 Epub Date: 2024-11-08 DOI:10.1016/j.talanta.2024.127170
Jean Claude Munyemana, Xiuxia Sun, Lu Li, Chunxia Zhang, Eskandar Qaed, Jianxi Xiao
{"title":"利用镧系元素功能化胶原蛋白靶向肽,战略性地增强胶原蛋白检测。","authors":"Jean Claude Munyemana, Xiuxia Sun, Lu Li, Chunxia Zhang, Eskandar Qaed, Jianxi Xiao","doi":"10.1016/j.talanta.2024.127170","DOIUrl":null,"url":null,"abstract":"<p><p>Monitoring collagen denaturation is crucial for diagnosing collagen-related diseases such as tumors and fibrosis. Herein, we have developed specific probes to detect denatured collagen (d-Col) and collagen I (Col I), utilizing peptide probes with sequences (GOP)<sub>10</sub> and HVWMQAP, targeting at d-Col and Col I, respectively. These peptides were conjugated with 1,10-phenanthroline-5-carboxylic Acid (Phen), forming Phen-Ahx-(GOP)<sub>10</sub> and Phen-Ahx-HVWMQAP. Phen acts as both an antenna sensitizer and a chelator, coordinating with Terbium (III) and Europium (III) ions via its nitrogen atom, facilitating fluorescent emission in green and red, respectively. The investigation demonstrated that Tb<sup>3+</sup> interacts with three (GOP)<sub>10</sub> peptide units through Phen, while Eu<sup>3+</sup> connects with four units of Ahx-HVWMQAP peptides. Additionally, it is important to note that the structure of the peptides remains unchanged after chelating with the lanthanide ions, maintaining their integrity throughout the process. These probes have effectively demonstrated their ability to bind to specific collagen types with selectivity, enabling accurate identification of their presence. The excellent binding of these probes is due to the branched structure of the formed lanthanide-peptide complexes. A dose-dependent linear association was observed in the binding of Eu-[Phen-Ahx-HVWMQAP]<sub>4</sub> to Col I, with concentration levels ranging from 0.5 to 100 μM and a minimal detectable concentration of 0.113 μM. We anticipate that our developed probes will improve understanding of collagen remodeling and provide opportunities for the diagnosis of collagen-associated diseases.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"283 ","pages":"127170"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategic enhancement of collagen detection using lanthanide-functionalized collagen targeted peptides.\",\"authors\":\"Jean Claude Munyemana, Xiuxia Sun, Lu Li, Chunxia Zhang, Eskandar Qaed, Jianxi Xiao\",\"doi\":\"10.1016/j.talanta.2024.127170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monitoring collagen denaturation is crucial for diagnosing collagen-related diseases such as tumors and fibrosis. Herein, we have developed specific probes to detect denatured collagen (d-Col) and collagen I (Col I), utilizing peptide probes with sequences (GOP)<sub>10</sub> and HVWMQAP, targeting at d-Col and Col I, respectively. These peptides were conjugated with 1,10-phenanthroline-5-carboxylic Acid (Phen), forming Phen-Ahx-(GOP)<sub>10</sub> and Phen-Ahx-HVWMQAP. Phen acts as both an antenna sensitizer and a chelator, coordinating with Terbium (III) and Europium (III) ions via its nitrogen atom, facilitating fluorescent emission in green and red, respectively. The investigation demonstrated that Tb<sup>3+</sup> interacts with three (GOP)<sub>10</sub> peptide units through Phen, while Eu<sup>3+</sup> connects with four units of Ahx-HVWMQAP peptides. Additionally, it is important to note that the structure of the peptides remains unchanged after chelating with the lanthanide ions, maintaining their integrity throughout the process. These probes have effectively demonstrated their ability to bind to specific collagen types with selectivity, enabling accurate identification of their presence. The excellent binding of these probes is due to the branched structure of the formed lanthanide-peptide complexes. A dose-dependent linear association was observed in the binding of Eu-[Phen-Ahx-HVWMQAP]<sub>4</sub> to Col I, with concentration levels ranging from 0.5 to 100 μM and a minimal detectable concentration of 0.113 μM. We anticipate that our developed probes will improve understanding of collagen remodeling and provide opportunities for the diagnosis of collagen-associated diseases.</p>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":\"283 \",\"pages\":\"127170\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.talanta.2024.127170\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2024.127170","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

监测胶原变性对于诊断肿瘤和纤维化等胶原相关疾病至关重要。在此,我们开发了检测变性胶原蛋白(d-Col)和胶原蛋白I(Col I)的特异性探针,利用序列为(GOP)10和HVWMQAP的多肽探针,分别靶向d-Col和Col I。这些肽与 1,10-菲罗啉-5-羧酸(Phen)共轭,形成 Phen-Ahx-(GOP)10 和 Phen-Ahx-HVWMQAP。Phen 既是天线敏化剂,又是螯合剂,通过其氮原子与铽(III)和铕(III)离子配位,分别促进绿色和红色荧光发射。研究表明,Tb3+ 通过 Phen 与三个 (GOP)10 肽单元相互作用,而 Eu3+ 则与 Ahx-HVWMQAP 肽的四个单元连接。此外,值得注意的是,肽的结构在与镧系离子螯合后保持不变,在整个过程中保持了其完整性。这些探针有效地证明了它们能够选择性地与特定类型的胶原蛋白结合,从而准确地识别它们的存在。这些探针之所以具有出色的结合能力,是因为所形成的镧肽复合物具有支链结构。Eu-[Phen-Ahx-HVWMQAP]4与Col I的结合呈剂量依赖性线性关系,浓度范围为0.5至100 μM,最低检测浓度为0.113 μM。我们预计,我们开发的探针将提高人们对胶原重塑的认识,并为诊断胶原相关疾病提供机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategic enhancement of collagen detection using lanthanide-functionalized collagen targeted peptides.

Monitoring collagen denaturation is crucial for diagnosing collagen-related diseases such as tumors and fibrosis. Herein, we have developed specific probes to detect denatured collagen (d-Col) and collagen I (Col I), utilizing peptide probes with sequences (GOP)10 and HVWMQAP, targeting at d-Col and Col I, respectively. These peptides were conjugated with 1,10-phenanthroline-5-carboxylic Acid (Phen), forming Phen-Ahx-(GOP)10 and Phen-Ahx-HVWMQAP. Phen acts as both an antenna sensitizer and a chelator, coordinating with Terbium (III) and Europium (III) ions via its nitrogen atom, facilitating fluorescent emission in green and red, respectively. The investigation demonstrated that Tb3+ interacts with three (GOP)10 peptide units through Phen, while Eu3+ connects with four units of Ahx-HVWMQAP peptides. Additionally, it is important to note that the structure of the peptides remains unchanged after chelating with the lanthanide ions, maintaining their integrity throughout the process. These probes have effectively demonstrated their ability to bind to specific collagen types with selectivity, enabling accurate identification of their presence. The excellent binding of these probes is due to the branched structure of the formed lanthanide-peptide complexes. A dose-dependent linear association was observed in the binding of Eu-[Phen-Ahx-HVWMQAP]4 to Col I, with concentration levels ranging from 0.5 to 100 μM and a minimal detectable concentration of 0.113 μM. We anticipate that our developed probes will improve understanding of collagen remodeling and provide opportunities for the diagnosis of collagen-associated diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Retraction Notice to "Fabrication of a novel sensor based on Cu quantum dot and SH-SiO2 nanoparticles supported on copper-based metal organic framework (Cu QD-SH-SiO2@Cu-MOF) and its application for the simultaneous determination of norepinephrine, piroxicam and epinephrine" [Talanta 252 (2023) 123776]. An innovative fluorescent probe for monitoring of ONOO- in multiple liver-injury models. Aptamer-functionalized magnetic blade spray coupled with a nucleic acid dye-based mass tag strategy for miniature mass spectrometry analysis of endoglin. Design and synthesis of esterase-activated fluorescent probe for diagnosis and surgical guidance of liver cancer. Exploring the role of graphene-metal hybrid nanomaterials as Raman signal enhancers in early stage cancer detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1