Jie Fang, Ying Huang, Yangbing Li, Houfu Luo, Lihua Ma, Ming Duan, Xinliang Li, Run Zhang, Yan Xiong
{"title":"钻井液中荧光示踪剂与蒙脱石晶体吸附相互作用的实验与模拟研究","authors":"Jie Fang, Ying Huang, Yangbing Li, Houfu Luo, Lihua Ma, Ming Duan, Xinliang Li, Run Zhang, Yan Xiong","doi":"10.1021/acs.langmuir.4c02848","DOIUrl":null,"url":null,"abstract":"<p><p>The adsorption interaction of oil field tracer in drilling fluid plays a significant role in tracer monitoring (TM) technology in the petroleum industry. In this work, the adsorption performances of Rhodamine B (RhB<sup>+</sup>) and fluorescein sodium (Fln<sup>-</sup>) tracers with montmorillonite (MMT) crystal in drilling fluid were investigated by both experimental and simulation methods. For the experimental aspect, the macroscopic results indicate thermodynamic monolayer adsorption by the Langmuir model and kinetic chemical adsorption by the pseudo-second-order (PSO) model. As a result, MMT shows a larger adsorption capacity (<i>q</i><sub>m</sub>) for RhB<sup>+</sup> than for Fln<sup>-</sup> with <math><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>0.069</mn><mo></mo><mi>g</mi><mo></mo><msup><mrow><mi>g</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>></mo><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>0.016</mn><mi>g</mi><mo></mo><msup><mrow><mi>g</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> but stronger adsorption spontaneity (Δ<sub>r</sub><i>G</i><sub>m</sub><sup>θ</sup>) for Fln<sup>-</sup> than for RhB<sup>+</sup> with <math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>θ</mi></mrow></msubsup></mrow><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mo>-</mo><mn>7.92</mn></math> kJ mol<sup>-1</sup> < <math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>θ</mi></mrow></msubsup></mrow><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mo>-</mo><mn>6.90</mn></math> kJ mol<sup>-1</sup>. Meanwhile, the interaction rate (<i>k</i><sub>2</sub>) of Fln<sup>-</sup> was shown to be faster than that of RhB<sup>+</sup> with <math><msub><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mn>1.07</mn><mo></mo><msup><mrow><mi>min</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo></mo><mo>></mo><msub><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mn>0.95</mn><mo></mo><msup><mrow><mi>min</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo></mo></math>. For simulation insight, MMT shows much higher system stability (<i>E</i>) for Fln<sup>-</sup> than for RhB<sup>+</sup> with <math><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub><mo><</mo><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub></math> and <math><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub><mo>></mo><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub></math>. Meanwhile, the microscopic simulation results reveal configuration changes and site distinctions for RhB<sup>+</sup> and Fln<sup>-</sup> interactions with the MMT crystal. The different adsorption responses were explained by proposing an interaction mechanism of force dominance and position orientation. Specifically, Fln<sup>-</sup> was deduced to interact with metal (Al, Ca) and metalloid (Si) elements in the MMT crystal interlayer by \"upright-insertion\" orientation while RhB<sup>+</sup> was deduced to interact with oxygen atoms on the MMT crystal surface by a \"flat-lying\" orientation. Hydrogen bonds, the electrostatic interaction, and the coordination effect were revealed to dominate for the interaction of tracer adsorption. This work provides both performance and mechanism investigation of fluorescent tracer adsorption interaction with the MMT crystal in drilling fluid, which is of great significance in reservoir exploitation.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment and Simulation Study on the Adsorption Interaction between a Fluorescent Tracer and a Montmorillonite Crystal in Drilling Fluid.\",\"authors\":\"Jie Fang, Ying Huang, Yangbing Li, Houfu Luo, Lihua Ma, Ming Duan, Xinliang Li, Run Zhang, Yan Xiong\",\"doi\":\"10.1021/acs.langmuir.4c02848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The adsorption interaction of oil field tracer in drilling fluid plays a significant role in tracer monitoring (TM) technology in the petroleum industry. In this work, the adsorption performances of Rhodamine B (RhB<sup>+</sup>) and fluorescein sodium (Fln<sup>-</sup>) tracers with montmorillonite (MMT) crystal in drilling fluid were investigated by both experimental and simulation methods. For the experimental aspect, the macroscopic results indicate thermodynamic monolayer adsorption by the Langmuir model and kinetic chemical adsorption by the pseudo-second-order (PSO) model. As a result, MMT shows a larger adsorption capacity (<i>q</i><sub>m</sub>) for RhB<sup>+</sup> than for Fln<sup>-</sup> with <math><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>0.069</mn><mo></mo><mi>g</mi><mo></mo><msup><mrow><mi>g</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>></mo><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>0.016</mn><mi>g</mi><mo></mo><msup><mrow><mi>g</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> but stronger adsorption spontaneity (Δ<sub>r</sub><i>G</i><sub>m</sub><sup>θ</sup>) for Fln<sup>-</sup> than for RhB<sup>+</sup> with <math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>θ</mi></mrow></msubsup></mrow><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mo>-</mo><mn>7.92</mn></math> kJ mol<sup>-1</sup> < <math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>θ</mi></mrow></msubsup></mrow><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mo>-</mo><mn>6.90</mn></math> kJ mol<sup>-1</sup>. Meanwhile, the interaction rate (<i>k</i><sub>2</sub>) of Fln<sup>-</sup> was shown to be faster than that of RhB<sup>+</sup> with <math><msub><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mn>1.07</mn><mo></mo><msup><mrow><mi>min</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo></mo><mo>></mo><msub><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mn>0.95</mn><mo></mo><msup><mrow><mi>min</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo></mo></math>. For simulation insight, MMT shows much higher system stability (<i>E</i>) for Fln<sup>-</sup> than for RhB<sup>+</sup> with <math><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub><mo><</mo><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub></math> and <math><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub><mo>></mo><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub></math>. Meanwhile, the microscopic simulation results reveal configuration changes and site distinctions for RhB<sup>+</sup> and Fln<sup>-</sup> interactions with the MMT crystal. The different adsorption responses were explained by proposing an interaction mechanism of force dominance and position orientation. Specifically, Fln<sup>-</sup> was deduced to interact with metal (Al, Ca) and metalloid (Si) elements in the MMT crystal interlayer by \\\"upright-insertion\\\" orientation while RhB<sup>+</sup> was deduced to interact with oxygen atoms on the MMT crystal surface by a \\\"flat-lying\\\" orientation. Hydrogen bonds, the electrostatic interaction, and the coordination effect were revealed to dominate for the interaction of tracer adsorption. This work provides both performance and mechanism investigation of fluorescent tracer adsorption interaction with the MMT crystal in drilling fluid, which is of great significance in reservoir exploitation.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02848\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02848","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Experiment and Simulation Study on the Adsorption Interaction between a Fluorescent Tracer and a Montmorillonite Crystal in Drilling Fluid.
The adsorption interaction of oil field tracer in drilling fluid plays a significant role in tracer monitoring (TM) technology in the petroleum industry. In this work, the adsorption performances of Rhodamine B (RhB+) and fluorescein sodium (Fln-) tracers with montmorillonite (MMT) crystal in drilling fluid were investigated by both experimental and simulation methods. For the experimental aspect, the macroscopic results indicate thermodynamic monolayer adsorption by the Langmuir model and kinetic chemical adsorption by the pseudo-second-order (PSO) model. As a result, MMT shows a larger adsorption capacity (qm) for RhB+ than for Fln- with but stronger adsorption spontaneity (ΔrGmθ) for Fln- than for RhB+ with kJ mol-1 < kJ mol-1. Meanwhile, the interaction rate (k2) of Fln- was shown to be faster than that of RhB+ with . For simulation insight, MMT shows much higher system stability (E) for Fln- than for RhB+ with and . Meanwhile, the microscopic simulation results reveal configuration changes and site distinctions for RhB+ and Fln- interactions with the MMT crystal. The different adsorption responses were explained by proposing an interaction mechanism of force dominance and position orientation. Specifically, Fln- was deduced to interact with metal (Al, Ca) and metalloid (Si) elements in the MMT crystal interlayer by "upright-insertion" orientation while RhB+ was deduced to interact with oxygen atoms on the MMT crystal surface by a "flat-lying" orientation. Hydrogen bonds, the electrostatic interaction, and the coordination effect were revealed to dominate for the interaction of tracer adsorption. This work provides both performance and mechanism investigation of fluorescent tracer adsorption interaction with the MMT crystal in drilling fluid, which is of great significance in reservoir exploitation.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).