钻井液中荧光示踪剂与蒙脱石晶体吸附相互作用的实验与模拟研究

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-11-15 DOI:10.1021/acs.langmuir.4c02848
Jie Fang, Ying Huang, Yangbing Li, Houfu Luo, Lihua Ma, Ming Duan, Xinliang Li, Run Zhang, Yan Xiong
{"title":"钻井液中荧光示踪剂与蒙脱石晶体吸附相互作用的实验与模拟研究","authors":"Jie Fang, Ying Huang, Yangbing Li, Houfu Luo, Lihua Ma, Ming Duan, Xinliang Li, Run Zhang, Yan Xiong","doi":"10.1021/acs.langmuir.4c02848","DOIUrl":null,"url":null,"abstract":"<p><p>The adsorption interaction of oil field tracer in drilling fluid plays a significant role in tracer monitoring (TM) technology in the petroleum industry. In this work, the adsorption performances of Rhodamine B (RhB<sup>+</sup>) and fluorescein sodium (Fln<sup>-</sup>) tracers with montmorillonite (MMT) crystal in drilling fluid were investigated by both experimental and simulation methods. For the experimental aspect, the macroscopic results indicate thermodynamic monolayer adsorption by the Langmuir model and kinetic chemical adsorption by the pseudo-second-order (PSO) model. As a result, MMT shows a larger adsorption capacity (<i>q</i><sub>m</sub>) for RhB<sup>+</sup> than for Fln<sup>-</sup> with <math><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>0.069</mn><mo>⁡</mo><mi>g</mi><mo>⁡</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>></mo><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>0.016</mn><mi>g</mi><mo>⁡</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> but stronger adsorption spontaneity (Δ<sub>r</sub><i>G</i><sub>m</sub><sup>θ</sup>) for Fln<sup>-</sup> than for RhB<sup>+</sup> with <math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>θ</mi></mrow></msubsup></mrow><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mo>-</mo><mn>7.92</mn></math> kJ mol<sup>-1</sup> < <math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>θ</mi></mrow></msubsup></mrow><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mo>-</mo><mn>6.90</mn></math> kJ mol<sup>-1</sup>. Meanwhile, the interaction rate (<i>k</i><sub>2</sub>) of Fln<sup>-</sup> was shown to be faster than that of RhB<sup>+</sup> with <math><msub><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mn>1.07</mn><mo>⁡</mo><msup><mrow><mi>min</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>⁡</mo><mo>></mo><msub><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mn>0.95</mn><mo>⁡</mo><msup><mrow><mi>min</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>⁡</mo></math>. For simulation insight, MMT shows much higher system stability (<i>E</i>) for Fln<sup>-</sup> than for RhB<sup>+</sup> with <math><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub><mo><</mo><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub></math> and <math><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub><mo>></mo><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub></math>. Meanwhile, the microscopic simulation results reveal configuration changes and site distinctions for RhB<sup>+</sup> and Fln<sup>-</sup> interactions with the MMT crystal. The different adsorption responses were explained by proposing an interaction mechanism of force dominance and position orientation. Specifically, Fln<sup>-</sup> was deduced to interact with metal (Al, Ca) and metalloid (Si) elements in the MMT crystal interlayer by \"upright-insertion\" orientation while RhB<sup>+</sup> was deduced to interact with oxygen atoms on the MMT crystal surface by a \"flat-lying\" orientation. Hydrogen bonds, the electrostatic interaction, and the coordination effect were revealed to dominate for the interaction of tracer adsorption. This work provides both performance and mechanism investigation of fluorescent tracer adsorption interaction with the MMT crystal in drilling fluid, which is of great significance in reservoir exploitation.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiment and Simulation Study on the Adsorption Interaction between a Fluorescent Tracer and a Montmorillonite Crystal in Drilling Fluid.\",\"authors\":\"Jie Fang, Ying Huang, Yangbing Li, Houfu Luo, Lihua Ma, Ming Duan, Xinliang Li, Run Zhang, Yan Xiong\",\"doi\":\"10.1021/acs.langmuir.4c02848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The adsorption interaction of oil field tracer in drilling fluid plays a significant role in tracer monitoring (TM) technology in the petroleum industry. In this work, the adsorption performances of Rhodamine B (RhB<sup>+</sup>) and fluorescein sodium (Fln<sup>-</sup>) tracers with montmorillonite (MMT) crystal in drilling fluid were investigated by both experimental and simulation methods. For the experimental aspect, the macroscopic results indicate thermodynamic monolayer adsorption by the Langmuir model and kinetic chemical adsorption by the pseudo-second-order (PSO) model. As a result, MMT shows a larger adsorption capacity (<i>q</i><sub>m</sub>) for RhB<sup>+</sup> than for Fln<sup>-</sup> with <math><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>0.069</mn><mo>⁡</mo><mi>g</mi><mo>⁡</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>></mo><msub><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>=</mo><mn>0.016</mn><mi>g</mi><mo>⁡</mo><msup><mrow><mi>g</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> but stronger adsorption spontaneity (Δ<sub>r</sub><i>G</i><sub>m</sub><sup>θ</sup>) for Fln<sup>-</sup> than for RhB<sup>+</sup> with <math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>θ</mi></mrow></msubsup></mrow><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mo>-</mo><mn>7.92</mn></math> kJ mol<sup>-1</sup> < <math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>r</mi></mrow></msub><msub><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>θ</mi></mrow></msubsup></mrow><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mo>-</mo><mn>6.90</mn></math> kJ mol<sup>-1</sup>. Meanwhile, the interaction rate (<i>k</i><sub>2</sub>) of Fln<sup>-</sup> was shown to be faster than that of RhB<sup>+</sup> with <math><msub><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>(</mo><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mn>1.07</mn><mo>⁡</mo><msup><mrow><mi>min</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>⁡</mo><mo>></mo><msub><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>(</mo><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>)</mo></mrow></msub><mo>=</mo><mn>0.95</mn><mo>⁡</mo><msup><mrow><mi>min</mi></mrow><mrow><mo>-</mo><mn>1</mn></mrow></msup><mo>⁡</mo></math>. For simulation insight, MMT shows much higher system stability (<i>E</i>) for Fln<sup>-</sup> than for RhB<sup>+</sup> with <math><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub><mo><</mo><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub></math> and <math><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>Fln</mi></mrow><mrow><mo>-</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub><mo>></mo><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>RhB</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>·</mo><mo>·</mo><mo>·</mo><mi>MMT</mi></mrow></msub></math>. Meanwhile, the microscopic simulation results reveal configuration changes and site distinctions for RhB<sup>+</sup> and Fln<sup>-</sup> interactions with the MMT crystal. The different adsorption responses were explained by proposing an interaction mechanism of force dominance and position orientation. Specifically, Fln<sup>-</sup> was deduced to interact with metal (Al, Ca) and metalloid (Si) elements in the MMT crystal interlayer by \\\"upright-insertion\\\" orientation while RhB<sup>+</sup> was deduced to interact with oxygen atoms on the MMT crystal surface by a \\\"flat-lying\\\" orientation. Hydrogen bonds, the electrostatic interaction, and the coordination effect were revealed to dominate for the interaction of tracer adsorption. This work provides both performance and mechanism investigation of fluorescent tracer adsorption interaction with the MMT crystal in drilling fluid, which is of great significance in reservoir exploitation.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02848\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02848","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

油田示踪剂在钻井液中的吸附相互作用在石油工业的示踪监测(TM)技术中发挥着重要作用。本文通过实验和模拟两种方法研究了钻井液中罗丹明 B(RhB+)和荧光素钠(Fln-)示踪剂与蒙脱石(MMT)晶体的吸附性能。在实验方面,宏观结果表明,热力学单层吸附采用 Langmuir 模型,动力学化学吸附采用伪二阶(PSO)模型。结果表明,MMT 对 RhB+ 的吸附容量(qm)大于对 Fln-的吸附容量(qm(RhB+)=0.069gg-1>qm(Fln-)=0.016gg-1),但对 Fln- 的吸附自发性(ΔrGmθ)强于对 RhB+的吸附自发性(ΔrGmθ(Fln-)=-7.92 kJ mol-1 < ΔrGmθ(RhB+)=-6.90 kJ mol-1)。同时,Fln- 的相互作用速率(k2)比 RhB+ 快,k2(Fln-)=1.07min-1>k2(RhB+)=0.95min-1。在模拟洞察方面,MMT 显示 Fln- 的系统稳定性(E)远高于 RhB+,EFln----MMTERhB+---MMT 和 ΔEFln----MMT>ΔERhB+---MMT。同时,微观模拟结果显示了 RhB+ 和 Fln- 与 MMT 晶体相互作用的构型变化和位点差异。通过提出力主导和位置定向的相互作用机制,解释了不同的吸附反应。具体来说,Fln- 与 MMT 晶体夹层中的金属(Al、Ca)和类金属(Si)元素的相互作用被推断为 "直立-插入 "取向,而 RhB+ 与 MMT 晶体表面的氧原子的相互作用被推断为 "平躺 "取向。结果表明,氢键、静电作用和配位效应在示踪剂吸附的相互作用中占主导地位。这项工作从性能和机理两方面研究了钻井液中荧光示踪剂与 MMT 晶体的吸附相互作用,对储层开采具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experiment and Simulation Study on the Adsorption Interaction between a Fluorescent Tracer and a Montmorillonite Crystal in Drilling Fluid.

The adsorption interaction of oil field tracer in drilling fluid plays a significant role in tracer monitoring (TM) technology in the petroleum industry. In this work, the adsorption performances of Rhodamine B (RhB+) and fluorescein sodium (Fln-) tracers with montmorillonite (MMT) crystal in drilling fluid were investigated by both experimental and simulation methods. For the experimental aspect, the macroscopic results indicate thermodynamic monolayer adsorption by the Langmuir model and kinetic chemical adsorption by the pseudo-second-order (PSO) model. As a result, MMT shows a larger adsorption capacity (qm) for RhB+ than for Fln- with qm(RhB+)=0.069gg-1>qm(Fln-)=0.016gg-1 but stronger adsorption spontaneity (ΔrGmθ) for Fln- than for RhB+ with ΔrGmθ(Fln-)=-7.92 kJ mol-1 < ΔrGmθ(RhB+)=-6.90 kJ mol-1. Meanwhile, the interaction rate (k2) of Fln- was shown to be faster than that of RhB+ with k2(Fln-)=1.07min-1>k2(RhB+)=0.95min-1. For simulation insight, MMT shows much higher system stability (E) for Fln- than for RhB+ with EFln-···MMT<ERhB+···MMT and ΔEFln-···MMT>ΔERhB+···MMT. Meanwhile, the microscopic simulation results reveal configuration changes and site distinctions for RhB+ and Fln- interactions with the MMT crystal. The different adsorption responses were explained by proposing an interaction mechanism of force dominance and position orientation. Specifically, Fln- was deduced to interact with metal (Al, Ca) and metalloid (Si) elements in the MMT crystal interlayer by "upright-insertion" orientation while RhB+ was deduced to interact with oxygen atoms on the MMT crystal surface by a "flat-lying" orientation. Hydrogen bonds, the electrostatic interaction, and the coordination effect were revealed to dominate for the interaction of tracer adsorption. This work provides both performance and mechanism investigation of fluorescent tracer adsorption interaction with the MMT crystal in drilling fluid, which is of great significance in reservoir exploitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
CO2 Microbubbles in Silicone Oil (Part II: Henry’s Constant and Anomalous Diffusion) Polyhydroxykanoate-Assisted Photocatalytic TiO2 Films for Hydrogen Production Excipient Induced Unusual Phase Separation in Bovine Serum Albumin Solution: An Explicit Role Played by Ion-Hydration Structural Reorganizations and Nanodomain Emergence in Lipid Membranes Driven by Ionic Liquids Performance of xMg3Al1-LDH@ZIF-8 in High Efficiency Electrocatalytic Reduction of CO2 to CO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1