Qi Chen, Elizabeth Flad, Rachel N. Gatewood, Maya S. Samih, Talon Krieger, Yan Gai
{"title":"伽马振荡可最佳预测手指运动。","authors":"Qi Chen, Elizabeth Flad, Rachel N. Gatewood, Maya S. Samih, Talon Krieger, Yan Gai","doi":"10.1016/j.brainres.2024.149335","DOIUrl":null,"url":null,"abstract":"<div><div>Our fingers are the most dexterous and complicated parts of our body and play a significant role in our daily activities. Non-invasive techniques, such as Electroencephalography (EEG) and Electromyography (EMG) can be used to collect neural and muscular signals related to finger movements. In this study, we combined an 8-channel EMG and a 31-channel EEG while the human subject moved one of the five fingers on the right hand. To identify the best EEG frequency features that encode distinct finger movements, we systematically examined the decoding accuracies of the slow-cortical potentials and three types of sensorimotor rhythms, namely the Mu, beta, and gamma oscillations. For both EMG and EEG, we came up with a simple and unified root mean square or power approach that avoided the complex signal features used by previous studies. The signal features were then fed into a feedforward artificial-neural-network (ANN) classifier. We found that the low-gamma oscillation provided the best decoding performance over the other frequency bands, ranging from 65.0 % to 89.0 %, which was comparable to the EMG performance. Combining EMG and low gamma into a single ANN can further improve the outcome for subjects who had showed suboptimal performances with EMG or EEG alone. This study provided a simple and efficient algorithm for prosthetics that assist patients with sensorimotor impairments.</div></div>","PeriodicalId":9083,"journal":{"name":"Brain Research","volume":"1848 ","pages":"Article 149335"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamma oscillation optimally predicts finger movements\",\"authors\":\"Qi Chen, Elizabeth Flad, Rachel N. Gatewood, Maya S. Samih, Talon Krieger, Yan Gai\",\"doi\":\"10.1016/j.brainres.2024.149335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Our fingers are the most dexterous and complicated parts of our body and play a significant role in our daily activities. Non-invasive techniques, such as Electroencephalography (EEG) and Electromyography (EMG) can be used to collect neural and muscular signals related to finger movements. In this study, we combined an 8-channel EMG and a 31-channel EEG while the human subject moved one of the five fingers on the right hand. To identify the best EEG frequency features that encode distinct finger movements, we systematically examined the decoding accuracies of the slow-cortical potentials and three types of sensorimotor rhythms, namely the Mu, beta, and gamma oscillations. For both EMG and EEG, we came up with a simple and unified root mean square or power approach that avoided the complex signal features used by previous studies. The signal features were then fed into a feedforward artificial-neural-network (ANN) classifier. We found that the low-gamma oscillation provided the best decoding performance over the other frequency bands, ranging from 65.0 % to 89.0 %, which was comparable to the EMG performance. Combining EMG and low gamma into a single ANN can further improve the outcome for subjects who had showed suboptimal performances with EMG or EEG alone. This study provided a simple and efficient algorithm for prosthetics that assist patients with sensorimotor impairments.</div></div>\",\"PeriodicalId\":9083,\"journal\":{\"name\":\"Brain Research\",\"volume\":\"1848 \",\"pages\":\"Article 149335\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006899324005894\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006899324005894","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Our fingers are the most dexterous and complicated parts of our body and play a significant role in our daily activities. Non-invasive techniques, such as Electroencephalography (EEG) and Electromyography (EMG) can be used to collect neural and muscular signals related to finger movements. In this study, we combined an 8-channel EMG and a 31-channel EEG while the human subject moved one of the five fingers on the right hand. To identify the best EEG frequency features that encode distinct finger movements, we systematically examined the decoding accuracies of the slow-cortical potentials and three types of sensorimotor rhythms, namely the Mu, beta, and gamma oscillations. For both EMG and EEG, we came up with a simple and unified root mean square or power approach that avoided the complex signal features used by previous studies. The signal features were then fed into a feedforward artificial-neural-network (ANN) classifier. We found that the low-gamma oscillation provided the best decoding performance over the other frequency bands, ranging from 65.0 % to 89.0 %, which was comparable to the EMG performance. Combining EMG and low gamma into a single ANN can further improve the outcome for subjects who had showed suboptimal performances with EMG or EEG alone. This study provided a simple and efficient algorithm for prosthetics that assist patients with sensorimotor impairments.
期刊介绍:
An international multidisciplinary journal devoted to fundamental research in the brain sciences.
Brain Research publishes papers reporting interdisciplinary investigations of nervous system structure and function that are of general interest to the international community of neuroscientists. As is evident from the journals name, its scope is broad, ranging from cellular and molecular studies through systems neuroscience, cognition and disease. Invited reviews are also published; suggestions for and inquiries about potential reviews are welcomed.
With the appearance of the final issue of the 2011 subscription, Vol. 67/1-2 (24 June 2011), Brain Research Reviews has ceased publication as a distinct journal separate from Brain Research. Review articles accepted for Brain Research are now published in that journal.