四氢化可的松通过 ROS 介导的 Akt 和 FoxO3 抑制作用诱导肌肉萎缩。

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2024-11-15 DOI:10.1186/s10020-024-00981-x
Xin-Qi Shan, Na Zhou, Chuang-Xin Pei, Xue Lu, Cai-Ping Chen, Hua-Qun Chen
{"title":"四氢化可的松通过 ROS 介导的 Akt 和 FoxO3 抑制作用诱导肌肉萎缩。","authors":"Xin-Qi Shan, Na Zhou, Chuang-Xin Pei, Xue Lu, Cai-Ping Chen, Hua-Qun Chen","doi":"10.1186/s10020-024-00981-x","DOIUrl":null,"url":null,"abstract":"<p><p>Tetrandrine (Tet), a well-known drug of calcium channel blocker, has been broadly applied for anti-inflammatory and anti-fibrogenetic therapy. However, due to the functional diversity of ubiquitous calcium channels, potential side-effects may be expected. Our previous report revealed an inhibitory effect of Tet on myogenesis of skeletal muscle. Here, we found that Tet induced protein degradation resulting in the myofibril atrophy. Upon administration with a relative high dose (40 mg/kg) of Tet for 28 days, the mice displayed significantly reduced muscle mass, strength force, and myosin heavy chain (MyHC) protein levels. The MyHC reduction was further detected in C2C12 myotubes after treating with Tet. Interestingly, the expression of Atrogin-1 and Murf-1, the skeletal muscle specific E3 ligases of protein ubiquitin-proteasome system (UPS), was accordingly up-regulated, and the reduced MyHC was significantly mitigated by MG132, a 26S proteasome inhibitor, indicating a key role of UPS in the protein degradation of muscle cells. Further study showed that Tet induced autophagy also participated in the protein degradation. Mechanistically, Tet treatment caused ROS production in myotubes that in turn targeted on FoxO3/AKT signaling, resulting in the activation of UPS and autophagy processes that were involved in the protein degradation. Our study reveals a potential side-effect of Tet on skeletal muscle atrophy, particularly when the drug dose is relatively high.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"30 1","pages":"218"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566300/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tetrandrine induces muscle atrophy involving ROS-mediated inhibition of Akt and FoxO3.\",\"authors\":\"Xin-Qi Shan, Na Zhou, Chuang-Xin Pei, Xue Lu, Cai-Ping Chen, Hua-Qun Chen\",\"doi\":\"10.1186/s10020-024-00981-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tetrandrine (Tet), a well-known drug of calcium channel blocker, has been broadly applied for anti-inflammatory and anti-fibrogenetic therapy. However, due to the functional diversity of ubiquitous calcium channels, potential side-effects may be expected. Our previous report revealed an inhibitory effect of Tet on myogenesis of skeletal muscle. Here, we found that Tet induced protein degradation resulting in the myofibril atrophy. Upon administration with a relative high dose (40 mg/kg) of Tet for 28 days, the mice displayed significantly reduced muscle mass, strength force, and myosin heavy chain (MyHC) protein levels. The MyHC reduction was further detected in C2C12 myotubes after treating with Tet. Interestingly, the expression of Atrogin-1 and Murf-1, the skeletal muscle specific E3 ligases of protein ubiquitin-proteasome system (UPS), was accordingly up-regulated, and the reduced MyHC was significantly mitigated by MG132, a 26S proteasome inhibitor, indicating a key role of UPS in the protein degradation of muscle cells. Further study showed that Tet induced autophagy also participated in the protein degradation. Mechanistically, Tet treatment caused ROS production in myotubes that in turn targeted on FoxO3/AKT signaling, resulting in the activation of UPS and autophagy processes that were involved in the protein degradation. Our study reveals a potential side-effect of Tet on skeletal muscle atrophy, particularly when the drug dose is relatively high.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"30 1\",\"pages\":\"218\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566300/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-00981-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00981-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

四氢萘啶(Tet)是一种著名的钙通道阻滞剂,已被广泛应用于抗炎和抗纤维化治疗。然而,由于无处不在的钙通道的功能多样性,可能会产生潜在的副作用。我们之前的报告揭示了 Tet 对骨骼肌肌生成的抑制作用。在这里,我们发现 Tet 会诱导蛋白质降解,导致肌原纤维萎缩。在服用相对高剂量(40 毫克/千克)的 Tet 28 天后,小鼠的肌肉质量、力量和肌球蛋白重链(MyHC)蛋白水平显著下降。使用 Tet 治疗后,在 C2C12 肌细胞管中进一步检测到 MyHC 的减少。有趣的是,蛋白质泛素蛋白酶体系统(UPS)的骨骼肌特异性E3连接酶Atrogin-1和Murf-1的表达也相应上调,26S蛋白酶体抑制剂MG132能显著缓解MyHC的降低,这表明UPS在肌肉细胞的蛋白质降解中起着关键作用。进一步的研究表明,Tet诱导的自噬也参与了蛋白质降解。从机理上讲,Tet 处理会导致肌管中产生 ROS,进而影响 FoxO3/AKT 信号转导,导致参与蛋白质降解的 UPS 和自噬过程被激活。我们的研究揭示了 Tet 对骨骼肌萎缩的潜在副作用,尤其是当药物剂量相对较高时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tetrandrine induces muscle atrophy involving ROS-mediated inhibition of Akt and FoxO3.

Tetrandrine (Tet), a well-known drug of calcium channel blocker, has been broadly applied for anti-inflammatory and anti-fibrogenetic therapy. However, due to the functional diversity of ubiquitous calcium channels, potential side-effects may be expected. Our previous report revealed an inhibitory effect of Tet on myogenesis of skeletal muscle. Here, we found that Tet induced protein degradation resulting in the myofibril atrophy. Upon administration with a relative high dose (40 mg/kg) of Tet for 28 days, the mice displayed significantly reduced muscle mass, strength force, and myosin heavy chain (MyHC) protein levels. The MyHC reduction was further detected in C2C12 myotubes after treating with Tet. Interestingly, the expression of Atrogin-1 and Murf-1, the skeletal muscle specific E3 ligases of protein ubiquitin-proteasome system (UPS), was accordingly up-regulated, and the reduced MyHC was significantly mitigated by MG132, a 26S proteasome inhibitor, indicating a key role of UPS in the protein degradation of muscle cells. Further study showed that Tet induced autophagy also participated in the protein degradation. Mechanistically, Tet treatment caused ROS production in myotubes that in turn targeted on FoxO3/AKT signaling, resulting in the activation of UPS and autophagy processes that were involved in the protein degradation. Our study reveals a potential side-effect of Tet on skeletal muscle atrophy, particularly when the drug dose is relatively high.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Co-culture of human AT2 cells with fibroblasts reveals a MUC5B phenotype: insights from an organoid model. TIMP1 regulates ferroptosis in osteoblasts by inhibiting TFRC ubiquitination: an in vitro and in vivo study. Exploring Smad5: a review to pave the way for a deeper understanding of the pathobiology of common respiratory diseases. Hyperoside induces ferroptosis in chronic myeloid leukemia cells by targeting NRF2. FUT8 upregulates CD36 and its core fucosylation to accelerate pericyte-myofibroblast transition through the mitochondrial-dependent apoptosis pathway during AKI-CKD.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1