{"title":"铌酸锂薄膜元表面中的手性控制二阶非线性频率转换。","authors":"Hangsheng Xu, Ruize Ma, Ying Zhu, Anlong Dong, Haiyan Jiang, Weiqing Gao, Meng Qin, Jianqiang Liu, Feng Wu, Hongju Li","doi":"10.1364/OL.538625","DOIUrl":null,"url":null,"abstract":"<p><p>The high-quality factor resonant metasurfaces have extensive applications in enhancing nonlinear frequency conversion efficiency at the subwavelength scale. However, methods for actively modulating the frequency conversion process are limited. We design a chiral lithium niobate film metasurface and investigate the photonic spin as a new degree of freedom to dynamically control the second-order nonlinear frequency conversion, without reconfiguring the structure by using external stimuli. The chiral resonance with circular dichroism (CD) of 0.62 gives rise to a high nonlinear CD of 0.84 in second-harmonic generation efficiency. Interestingly, combining the chiral resonance and an achiral quasi-bound state in the continuum enables us to investigate the photonic-spin-controlled sum-frequency generation and the photon pair generation from the spontaneous parametric downconversion process. Owing to the ultrahigh quality factor exceeding 10<sup>3</sup> both for two resonances, the second-order nonlinear frequency conversion occurs at a wavelength region of 0.2 nm, suggesting good monochromaticity. Our work opens new, to our knowledge, avenues for practical implementation of dynamically controlled nonlinear optical devices and will find utility in holography, switchable light sources, and information processing.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 22","pages":"6405-6408"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chirality-controlled second-order nonlinear frequency conversion in lithium niobate film metasurfaces.\",\"authors\":\"Hangsheng Xu, Ruize Ma, Ying Zhu, Anlong Dong, Haiyan Jiang, Weiqing Gao, Meng Qin, Jianqiang Liu, Feng Wu, Hongju Li\",\"doi\":\"10.1364/OL.538625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The high-quality factor resonant metasurfaces have extensive applications in enhancing nonlinear frequency conversion efficiency at the subwavelength scale. However, methods for actively modulating the frequency conversion process are limited. We design a chiral lithium niobate film metasurface and investigate the photonic spin as a new degree of freedom to dynamically control the second-order nonlinear frequency conversion, without reconfiguring the structure by using external stimuli. The chiral resonance with circular dichroism (CD) of 0.62 gives rise to a high nonlinear CD of 0.84 in second-harmonic generation efficiency. Interestingly, combining the chiral resonance and an achiral quasi-bound state in the continuum enables us to investigate the photonic-spin-controlled sum-frequency generation and the photon pair generation from the spontaneous parametric downconversion process. Owing to the ultrahigh quality factor exceeding 10<sup>3</sup> both for two resonances, the second-order nonlinear frequency conversion occurs at a wavelength region of 0.2 nm, suggesting good monochromaticity. Our work opens new, to our knowledge, avenues for practical implementation of dynamically controlled nonlinear optical devices and will find utility in holography, switchable light sources, and information processing.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 22\",\"pages\":\"6405-6408\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.538625\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.538625","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Chirality-controlled second-order nonlinear frequency conversion in lithium niobate film metasurfaces.
The high-quality factor resonant metasurfaces have extensive applications in enhancing nonlinear frequency conversion efficiency at the subwavelength scale. However, methods for actively modulating the frequency conversion process are limited. We design a chiral lithium niobate film metasurface and investigate the photonic spin as a new degree of freedom to dynamically control the second-order nonlinear frequency conversion, without reconfiguring the structure by using external stimuli. The chiral resonance with circular dichroism (CD) of 0.62 gives rise to a high nonlinear CD of 0.84 in second-harmonic generation efficiency. Interestingly, combining the chiral resonance and an achiral quasi-bound state in the continuum enables us to investigate the photonic-spin-controlled sum-frequency generation and the photon pair generation from the spontaneous parametric downconversion process. Owing to the ultrahigh quality factor exceeding 103 both for two resonances, the second-order nonlinear frequency conversion occurs at a wavelength region of 0.2 nm, suggesting good monochromaticity. Our work opens new, to our knowledge, avenues for practical implementation of dynamically controlled nonlinear optical devices and will find utility in holography, switchable light sources, and information processing.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.