{"title":"基于 QDs@Aerogels/SM 复合纳米薄膜的高灵敏度 NO2 荧光传感器。","authors":"Heng Li, Yongxiao Chen, Wei Zhou, Guanjie Yang, Tian Xie, Qiuhua Li, Jianlin Huang, Cong Liu, Xiaobo Xing","doi":"10.1364/OL.529773","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum dots (QDs) exhibit excellent optical and chemical properties, making them advantageous for fluorescence sensing. However, gas sensor using QDs is often hampered by challenges such as gas diffusion and low concentration. This work describes the development of a nitrogen dioxide (NO<sub>2</sub>) fluorescence gas sensor that utilizes a QDs@Aerogels/SM composite nanofilm containing CdTe QDs modified by reduced glutathione (GSH), silica microspheres (SMs), and silica aerogel. The SM and porous aerogels create a uniform porous structure that enhances the distribution of QDs. Compared to the pure QDs film, the QDs@Aerogels/SM composite film exhibits enhanced fluorescence intensity. The porous structure promotes the adsorption of NO<sub>2</sub>, which improves the detection sensitivity. The QDs@Aerogels/SM composite film was applied in a portable gas sensor. The sensor demonstrates a good linear response to NO<sub>2</sub> gas in the range of 0-10 ppm, with an ultra-low detection limit of 0.096 ppm and high selectivity. The uniform distribution of aerogel and SM enhances the stability of the composite nanofilm, and the fluorescence of the films remains virtually unchanged over a period of 60 days which ensures its optimal performance over extended periods of use. The fluorescent NO<sub>2</sub> sensor demonstrated selective and sensitive quenching upon exposure to NO<sub>2</sub>, making it ideal for environmental monitoring and further applications.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 22","pages":"6381-6384"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-sensitivity NO<sub>2</sub> fluorescence sensor based on a QDs@Aerogels/SM composite nanofilm.\",\"authors\":\"Heng Li, Yongxiao Chen, Wei Zhou, Guanjie Yang, Tian Xie, Qiuhua Li, Jianlin Huang, Cong Liu, Xiaobo Xing\",\"doi\":\"10.1364/OL.529773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum dots (QDs) exhibit excellent optical and chemical properties, making them advantageous for fluorescence sensing. However, gas sensor using QDs is often hampered by challenges such as gas diffusion and low concentration. This work describes the development of a nitrogen dioxide (NO<sub>2</sub>) fluorescence gas sensor that utilizes a QDs@Aerogels/SM composite nanofilm containing CdTe QDs modified by reduced glutathione (GSH), silica microspheres (SMs), and silica aerogel. The SM and porous aerogels create a uniform porous structure that enhances the distribution of QDs. Compared to the pure QDs film, the QDs@Aerogels/SM composite film exhibits enhanced fluorescence intensity. The porous structure promotes the adsorption of NO<sub>2</sub>, which improves the detection sensitivity. The QDs@Aerogels/SM composite film was applied in a portable gas sensor. The sensor demonstrates a good linear response to NO<sub>2</sub> gas in the range of 0-10 ppm, with an ultra-low detection limit of 0.096 ppm and high selectivity. The uniform distribution of aerogel and SM enhances the stability of the composite nanofilm, and the fluorescence of the films remains virtually unchanged over a period of 60 days which ensures its optimal performance over extended periods of use. The fluorescent NO<sub>2</sub> sensor demonstrated selective and sensitive quenching upon exposure to NO<sub>2</sub>, making it ideal for environmental monitoring and further applications.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 22\",\"pages\":\"6381-6384\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.529773\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.529773","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
High-sensitivity NO2 fluorescence sensor based on a QDs@Aerogels/SM composite nanofilm.
Quantum dots (QDs) exhibit excellent optical and chemical properties, making them advantageous for fluorescence sensing. However, gas sensor using QDs is often hampered by challenges such as gas diffusion and low concentration. This work describes the development of a nitrogen dioxide (NO2) fluorescence gas sensor that utilizes a QDs@Aerogels/SM composite nanofilm containing CdTe QDs modified by reduced glutathione (GSH), silica microspheres (SMs), and silica aerogel. The SM and porous aerogels create a uniform porous structure that enhances the distribution of QDs. Compared to the pure QDs film, the QDs@Aerogels/SM composite film exhibits enhanced fluorescence intensity. The porous structure promotes the adsorption of NO2, which improves the detection sensitivity. The QDs@Aerogels/SM composite film was applied in a portable gas sensor. The sensor demonstrates a good linear response to NO2 gas in the range of 0-10 ppm, with an ultra-low detection limit of 0.096 ppm and high selectivity. The uniform distribution of aerogel and SM enhances the stability of the composite nanofilm, and the fluorescence of the films remains virtually unchanged over a period of 60 days which ensures its optimal performance over extended periods of use. The fluorescent NO2 sensor demonstrated selective and sensitive quenching upon exposure to NO2, making it ideal for environmental monitoring and further applications.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.