通过在双通配置的掺铋磷硅酸盐光纤中促进 BACs-P 的形成,实现 O + E 波段 0.7 dB/m 的增益。

IF 3.1 2区 物理与天体物理 Q2 OPTICS Optics letters Pub Date : 2024-11-15 DOI:10.1364/OL.541880
Xiaoke Yin, Shaokun Liu, Le He, Wenzhen Li, Yang Chen, Nengli Dai, Jinyan Li
{"title":"通过在双通配置的掺铋磷硅酸盐光纤中促进 BACs-P 的形成,实现 O + E 波段 0.7 dB/m 的增益。","authors":"Xiaoke Yin, Shaokun Liu, Le He, Wenzhen Li, Yang Chen, Nengli Dai, Jinyan Li","doi":"10.1364/OL.541880","DOIUrl":null,"url":null,"abstract":"<p><p>The long fiber length required for the amplification of bismuth-doped fiber (BDF) has hindered its practical application. In this paper, we propose and demonstrate a feasible method to improve the active absorption of bismuth active centers (BACs) by optimizing the drawing conditions, achieving a high gain with a short fiber length. The bismuth-doped phosphosilicate fiber (BPSF) preform was fabricated by the modified chemical vapor deposition (MCVD) process and drawn into fiber under nine different conditions. The results indicate that the active absorption of BACs increases as the drawing temperature increases and the drawing speed decreases within these drawing parameters. Meanwhile, the corresponding gain per unit length is improved. Furthermore, a maximum gain of 31.6 dB at 1350 nm with the >20 dB gain wavelength range of 1311-1401 nm was achieved in a double-pass double-pump configuration, using only 45 m BPSF. Meanwhile, the -3 dB bandwidth was 1328-1370 nm. The gain per unit length is 0.7 dB/m, which, to the best of our knowledge, is the highest gain per unit length reported for the BPSF.</p>","PeriodicalId":19540,"journal":{"name":"Optics letters","volume":"49 22","pages":"6525-6528"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizing 0.7 dB/m gain in O + E band by promoting BACs-P formation in bismuth-doped phosphosilicate fiber with double-pass configuration.\",\"authors\":\"Xiaoke Yin, Shaokun Liu, Le He, Wenzhen Li, Yang Chen, Nengli Dai, Jinyan Li\",\"doi\":\"10.1364/OL.541880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The long fiber length required for the amplification of bismuth-doped fiber (BDF) has hindered its practical application. In this paper, we propose and demonstrate a feasible method to improve the active absorption of bismuth active centers (BACs) by optimizing the drawing conditions, achieving a high gain with a short fiber length. The bismuth-doped phosphosilicate fiber (BPSF) preform was fabricated by the modified chemical vapor deposition (MCVD) process and drawn into fiber under nine different conditions. The results indicate that the active absorption of BACs increases as the drawing temperature increases and the drawing speed decreases within these drawing parameters. Meanwhile, the corresponding gain per unit length is improved. Furthermore, a maximum gain of 31.6 dB at 1350 nm with the >20 dB gain wavelength range of 1311-1401 nm was achieved in a double-pass double-pump configuration, using only 45 m BPSF. Meanwhile, the -3 dB bandwidth was 1328-1370 nm. The gain per unit length is 0.7 dB/m, which, to the best of our knowledge, is the highest gain per unit length reported for the BPSF.</p>\",\"PeriodicalId\":19540,\"journal\":{\"name\":\"Optics letters\",\"volume\":\"49 22\",\"pages\":\"6525-6528\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1364/OL.541880\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OL.541880","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

掺铋光纤(BDF)放大所需的光纤长度较长,这阻碍了其实际应用。在本文中,我们提出并演示了一种可行的方法,通过优化拉丝条件来提高铋活性中心(BAC)的活性吸收,从而在较短的光纤长度下实现高增益。我们采用改良化学气相沉积(MCVD)工艺制作了掺铋磷硅酸盐光纤(BPSF)预型件,并在九种不同条件下将其拉伸成光纤。结果表明,在这些拉丝参数范围内,随着拉丝温度的升高和拉丝速度的降低,BAC 的活性吸收增加。同时,单位长度的相应增益也得到了提高。此外,在双通双泵配置中,仅使用 45 m BPSF,就实现了 1350 nm 波长处 31.6 dB 的最大增益,增益大于 20 dB 的波长范围为 1311-1401 nm。同时,-3 dB 带宽为 1328-1370 nm。单位长度增益为 0.7 dB/m,据我们所知,这是目前所报道的 BPSF 单位长度最高增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realizing 0.7 dB/m gain in O + E band by promoting BACs-P formation in bismuth-doped phosphosilicate fiber with double-pass configuration.

The long fiber length required for the amplification of bismuth-doped fiber (BDF) has hindered its practical application. In this paper, we propose and demonstrate a feasible method to improve the active absorption of bismuth active centers (BACs) by optimizing the drawing conditions, achieving a high gain with a short fiber length. The bismuth-doped phosphosilicate fiber (BPSF) preform was fabricated by the modified chemical vapor deposition (MCVD) process and drawn into fiber under nine different conditions. The results indicate that the active absorption of BACs increases as the drawing temperature increases and the drawing speed decreases within these drawing parameters. Meanwhile, the corresponding gain per unit length is improved. Furthermore, a maximum gain of 31.6 dB at 1350 nm with the >20 dB gain wavelength range of 1311-1401 nm was achieved in a double-pass double-pump configuration, using only 45 m BPSF. Meanwhile, the -3 dB bandwidth was 1328-1370 nm. The gain per unit length is 0.7 dB/m, which, to the best of our knowledge, is the highest gain per unit length reported for the BPSF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics letters
Optics letters 物理-光学
CiteScore
6.60
自引率
8.30%
发文量
2275
审稿时长
1.7 months
期刊介绍: The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community. Optics Letters offers rapid dissemination of new results in all areas of optics with short, original, peer-reviewed communications. Optics Letters covers the latest research in optical science, including optical measurements, optical components and devices, atmospheric optics, biomedical optics, Fourier optics, integrated optics, optical processing, optoelectronics, lasers, nonlinear optics, optical storage and holography, optical coherence, polarization, quantum electronics, ultrafast optical phenomena, photonic crystals, and fiber optics. Criteria used in determining acceptability of contributions include newsworthiness to a substantial part of the optics community and the effect of rapid publication on the research of others. This journal, published twice each month, is where readers look for the latest discoveries in optics.
期刊最新文献
112° field of view high-resolution swept-source OCT angiography for rat retinas. 2-µm energy-managed soliton fiber laser. 414.9 W in-band pumped Er/Yb co-doped fiber amplifier seeded by a random fiber laser. Adaptive range gating based on variational Bayesian inference for space debris ranging with spaceborne single-photon LiDAR. All-optical image transmission through a dynamically perturbed multimode fiber and a ring-core fiber using diffractive deep neural networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1